Artificial Intelligence for Dunhuang Cultural Heritage Protection: The Project and the Dataset View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-08-24

AUTHORS

Tianxiu Yu, Cong Lin, Shijie Zhang, Chunxue Wang, Xiaohong Ding, Huili An, Xiaoxiang Liu, Ting Qu, Liang Wan, Shaodi You, Jian Wu, Jiawan Zhang

ABSTRACT

In this work, we introduce our project on Dunhuang cultural heritage protection using artificial intelligence. The Dunhuang Mogao Grottoes in China, also known as the Grottoes of the Thousand Buddhas, is a religious and cultural heritage located on the Silk Road. The grottoes were built from the 4th century to the 14th century. After thousands of years, the in grottoes decaying is serious. In addition, numerous historical records were destroyed throughout the years, making it difficult for archaeologists to reconstruct history. We aim to use modern computer vision and machine learning technologies to solve such challenges. First, we propose to use deep networks to automatically perform the restoration. Through out experiments, we find the automated restoration can provide comparable quality as those manually restored from an archaeologist. This can significantly speed up the restoration given the enormous size of the historical paintings. Second, we propose to use detection and retrieval for further analyzing the tremendously large amount of objects because it is unreasonable to manually label and analyze them. Several state-of-the-art methods are rigorously tested and quantitatively compared in different criteria and categorically. In this work, we created a new dataset, namely, AI for Dunhuang, to facilitate the research. Version v1.0 of the dataset comprises of data and label for the restoration, style transfer, detection, and retrieval. Specifically, the dataset has 10,000 images for restoration, 3455 for style transfer, and 6147 for property retrieval. Lastly, we propose to use style transfer to link and analyze the styles over time, given that the grottoes were build over 1000 years by numerous artists. This enables the possibly to analyze and study the art styles over 1000 years and further enable future researches on cross-era style analysis. We benchmark representative methods and conduct a comparative study on the results for our solution. The dataset will be publicly available along with this paper. More... »

PAGES

2646-2673

References to SciGraph publications

  • 2009-09-09. The Pascal Visual Object Classes (VOC) Challenge in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2007-11-22. Flying Laser Range Sensor for Large-Scale Site-Modeling and Its Applications in Bayon Digital Archival Project in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2015-04-11. ImageNet Large Scale Visual Recognition Challenge in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2018-10-09. Contextual-Based Image Inpainting: Infer, Match, and Translate in COMPUTER VISION – ECCV 2018
  • 2016-09-17. Perceptual Losses for Real-Time Style Transfer and Super-Resolution in COMPUTER VISION – ECCV 2016
  • 2018-10-06. Image Inpainting for Irregular Holes Using Partial Convolutions in COMPUTER VISION – ECCV 2018
  • 2018-10-07. A Style-Aware Content Loss for Real-Time HD Style Transfer in COMPUTER VISION – ECCV 2018
  • 2020-04-08. Classification and Detection of Symbols in Ancient Papyri in VISUAL COMPUTING FOR CULTURAL HERITAGE
  • 2016-09-17. SSD: Single Shot MultiBox Detector in COMPUTER VISION – ECCV 2016
  • 2020-11-05. Contrastive Learning for Unpaired Image-to-Image Translation in COMPUTER VISION – ECCV 2020
  • 2014. Microsoft COCO: Common Objects in Context in COMPUTER VISION – ECCV 2014
  • 2000-10. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2010-10-19. Capturing Village-level Heritages with a Hand-held Camera-Laser Fusion Sensor in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2015-11-18. U-Net: Convolutional Networks for Biomedical Image Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2015
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11263-022-01665-x

    DOI

    http://dx.doi.org/10.1007/s11263-022-01665-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1150460628


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dunhuang Academy, Dunhuang, Gansu, China", 
              "id": "http://www.grid.ac/institutes/grid.464288.4", 
              "name": [
                "College of Intelligence and Computing, Tianjin University, Tianjin, China", 
                "Dunhuang Academy, Dunhuang, Gansu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Tianxiu", 
            "id": "sg:person.016336476425.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336476425.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jinan University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Jinan University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Cong", 
            "id": "sg:person.07633425225.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633425225.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tianjin Medical University, Tianjin, China", 
              "id": "http://www.grid.ac/institutes/grid.265021.2", 
              "name": [
                "Tianjin Medical University, Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Shijie", 
            "id": "sg:person.010431005625.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431005625.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dunhuang Academy, Dunhuang, Gansu, China", 
              "id": "http://www.grid.ac/institutes/grid.464288.4", 
              "name": [
                "Dunhuang Academy, Dunhuang, Gansu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Chunxue", 
            "id": "sg:person.07545645007.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545645007.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dunhuang Academy, Dunhuang, Gansu, China", 
              "id": "http://www.grid.ac/institutes/grid.464288.4", 
              "name": [
                "Dunhuang Academy, Dunhuang, Gansu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ding", 
            "givenName": "Xiaohong", 
            "id": "sg:person.012023746625.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012023746625.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dunhuang Academy, Dunhuang, Gansu, China", 
              "id": "http://www.grid.ac/institutes/grid.464288.4", 
              "name": [
                "Dunhuang Academy, Dunhuang, Gansu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "An", 
            "givenName": "Huili", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jinan University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Jinan University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Xiaoxiang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jinan University, Guangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Jinan University, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qu", 
            "givenName": "Ting", 
            "id": "sg:person.015433145661.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015433145661.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Intelligence and Computing, Tianjin University, Tianjin, China", 
              "id": "http://www.grid.ac/institutes/grid.33763.32", 
              "name": [
                "College of Intelligence and Computing, Tianjin University, Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wan", 
            "givenName": "Liang", 
            "id": "sg:person.07474605515.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07474605515.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Amsterdam, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.7177.6", 
              "name": [
                "University of Amsterdam, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "You", 
            "givenName": "Shaodi", 
            "id": "sg:person.07350570125.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350570125.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dunhuang Academy, Dunhuang, Gansu, China", 
              "id": "http://www.grid.ac/institutes/grid.464288.4", 
              "name": [
                "Dunhuang Academy, Dunhuang, Gansu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Jian", 
            "id": "sg:person.012621327225.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621327225.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Intelligence and Computing, Tianjin University, Tianjin, China", 
              "id": "http://www.grid.ac/institutes/grid.33763.32", 
              "name": [
                "College of Intelligence and Computing, Tianjin University, Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jiawan", 
            "id": "sg:person.015175052743.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015175052743.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774818", 
              "https://doi.org/10.1007/978-3-319-24574-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-015-0816-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009767488", 
              "https://doi.org/10.1007/s11263-015-0816-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-009-0275-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014796149", 
              "https://doi.org/10.1007/s11263-009-0275-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-007-0104-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027360020", 
              "https://doi.org/10.1007/s11263-007-0104-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-37191-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126270703", 
              "https://doi.org/10.1007/978-3-030-37191-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01237-3_43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107463328", 
              "https://doi.org/10.1007/978-3-030-01237-3_43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-58545-7_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132333993", 
              "https://doi.org/10.1007/978-3-030-58545-7_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46475-6_43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018034649", 
              "https://doi.org/10.1007/978-3-319-46475-6_43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026553619983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036231609", 
              "https://doi.org/10.1023/a:1026553619983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01216-8_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107502557", 
              "https://doi.org/10.1007/978-3-030-01216-8_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-010-0397-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032536926", 
              "https://doi.org/10.1007/s11263-010-0397-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10602-1_48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045321436", 
              "https://doi.org/10.1007/978-3-319-10602-1_48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01252-6_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107454764", 
              "https://doi.org/10.1007/978-3-030-01252-6_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46448-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017177111", 
              "https://doi.org/10.1007/978-3-319-46448-0_2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-08-24", 
        "datePublishedReg": "2022-08-24", 
        "description": "In this work, we introduce our project on Dunhuang cultural heritage protection using artificial intelligence. The Dunhuang Mogao Grottoes in China, also known as the Grottoes of the Thousand Buddhas, is a religious and cultural heritage located on the Silk Road. The grottoes were built from the 4th century to the 14th century. After thousands of years, the in grottoes decaying is serious. In addition, numerous historical records were destroyed throughout the years, making it difficult for archaeologists to reconstruct history. We aim to use modern computer vision and machine learning technologies to solve such challenges. First, we propose to use deep networks to automatically perform the restoration. Through out experiments, we find the automated restoration can provide comparable quality as those manually restored from an archaeologist. This can significantly speed up the restoration given the enormous size of the historical paintings. Second, we propose to use detection and retrieval for further analyzing the tremendously large amount of objects because it is unreasonable to manually label and analyze them. Several state-of-the-art methods are rigorously tested and quantitatively compared in different criteria and categorically. In this work, we created a new dataset, namely, AI for Dunhuang, to facilitate the research. Version v1.0 of the dataset comprises of data and label for the restoration, style transfer, detection, and retrieval. Specifically, the dataset has 10,000 images for restoration, 3455 for style transfer, and 6147 for property retrieval. Lastly, we propose to use style transfer to link and analyze the styles over time, given that the grottoes were build over 1000 years by numerous artists. This enables the possibly to analyze and study the art styles over 1000 years and further enable future researches on cross-era style analysis. We benchmark representative methods and conduct a comparative study on the results for our solution. The dataset will be publicly available along with this paper.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11263-022-01665-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1032807", 
            "issn": [
              "0920-5691", 
              "1573-1405"
            ], 
            "name": "International Journal of Computer Vision", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "130"
          }
        ], 
        "keywords": [
          "cultural heritage protection", 
          "heritage protection", 
          "style transfer", 
          "artificial intelligence", 
          "numerous historical records", 
          "modern computer vision", 
          "cultural heritage", 
          "thousands of years", 
          "historical paintings", 
          "Silk Road", 
          "historical records", 
          "art style", 
          "numerous artists", 
          "Dunhuang Mogao Grottoes", 
          "Mogao Grottoes", 
          "computer vision", 
          "Grottoes", 
          "deep network", 
          "art methods", 
          "archaeologists", 
          "century", 
          "dataset comprises", 
          "out experiments", 
          "new dataset", 
          "version v1.0", 
          "representative methods", 
          "dataset", 
          "retrieval", 
          "intelligence", 
          "such challenges", 
          "enormous size", 
          "comparable quality", 
          "heritage", 
          "large amount", 
          "Dunhuang", 
          "Buddha", 
          "painting", 
          "artists", 
          "style", 
          "history", 
          "different criteria", 
          "project", 
          "AI", 
          "machine", 
          "network", 
          "restoration", 
          "detection", 
          "images", 
          "records", 
          "vision", 
          "style analysis", 
          "thousands", 
          "objects", 
          "years", 
          "China", 
          "technology", 
          "road", 
          "labels", 
          "v1.0", 
          "work", 
          "method", 
          "challenges", 
          "research", 
          "state", 
          "comprises", 
          "solution", 
          "protection", 
          "quality", 
          "property retrievals", 
          "data", 
          "experiments", 
          "comparative study", 
          "future research", 
          "time", 
          "amount", 
          "results", 
          "paper", 
          "transfer", 
          "criteria", 
          "analysis", 
          "size", 
          "addition", 
          "study"
        ], 
        "name": "Artificial Intelligence for Dunhuang Cultural Heritage Protection: The Project and the Dataset", 
        "pagination": "2646-2673", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1150460628"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11263-022-01665-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11263-022-01665-x", 
          "https://app.dimensions.ai/details/publication/pub.1150460628"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_933.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11263-022-01665-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11263-022-01665-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11263-022-01665-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11263-022-01665-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11263-022-01665-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    284 TRIPLES      21 PREDICATES      121 URIs      99 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11263-022-01665-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N34b476a1a02849538df08e53f8a77314
    4 schema:citation sg:pub.10.1007/978-3-030-01216-8_1
    5 sg:pub.10.1007/978-3-030-01237-3_43
    6 sg:pub.10.1007/978-3-030-01252-6_6
    7 sg:pub.10.1007/978-3-030-37191-3_7
    8 sg:pub.10.1007/978-3-030-58545-7_19
    9 sg:pub.10.1007/978-3-319-10602-1_48
    10 sg:pub.10.1007/978-3-319-24574-4_28
    11 sg:pub.10.1007/978-3-319-46448-0_2
    12 sg:pub.10.1007/978-3-319-46475-6_43
    13 sg:pub.10.1007/s11263-007-0104-6
    14 sg:pub.10.1007/s11263-009-0275-4
    15 sg:pub.10.1007/s11263-010-0397-8
    16 sg:pub.10.1007/s11263-015-0816-y
    17 sg:pub.10.1023/a:1026553619983
    18 schema:datePublished 2022-08-24
    19 schema:datePublishedReg 2022-08-24
    20 schema:description In this work, we introduce our project on Dunhuang cultural heritage protection using artificial intelligence. The Dunhuang Mogao Grottoes in China, also known as the Grottoes of the Thousand Buddhas, is a religious and cultural heritage located on the Silk Road. The grottoes were built from the 4th century to the 14th century. After thousands of years, the in grottoes decaying is serious. In addition, numerous historical records were destroyed throughout the years, making it difficult for archaeologists to reconstruct history. We aim to use modern computer vision and machine learning technologies to solve such challenges. First, we propose to use deep networks to automatically perform the restoration. Through out experiments, we find the automated restoration can provide comparable quality as those manually restored from an archaeologist. This can significantly speed up the restoration given the enormous size of the historical paintings. Second, we propose to use detection and retrieval for further analyzing the tremendously large amount of objects because it is unreasonable to manually label and analyze them. Several state-of-the-art methods are rigorously tested and quantitatively compared in different criteria and categorically. In this work, we created a new dataset, namely, AI for Dunhuang, to facilitate the research. Version v1.0 of the dataset comprises of data and label for the restoration, style transfer, detection, and retrieval. Specifically, the dataset has 10,000 images for restoration, 3455 for style transfer, and 6147 for property retrieval. Lastly, we propose to use style transfer to link and analyze the styles over time, given that the grottoes were build over 1000 years by numerous artists. This enables the possibly to analyze and study the art styles over 1000 years and further enable future researches on cross-era style analysis. We benchmark representative methods and conduct a comparative study on the results for our solution. The dataset will be publicly available along with this paper.
    21 schema:genre article
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N3ac8cec0ab504d7e81712262acf07cc9
    24 Ndeba501a44f647a48d4b3407639bb224
    25 sg:journal.1032807
    26 schema:keywords AI
    27 Buddha
    28 China
    29 Dunhuang
    30 Dunhuang Mogao Grottoes
    31 Grottoes
    32 Mogao Grottoes
    33 Silk Road
    34 addition
    35 amount
    36 analysis
    37 archaeologists
    38 art methods
    39 art style
    40 artificial intelligence
    41 artists
    42 century
    43 challenges
    44 comparable quality
    45 comparative study
    46 comprises
    47 computer vision
    48 criteria
    49 cultural heritage
    50 cultural heritage protection
    51 data
    52 dataset
    53 dataset comprises
    54 deep network
    55 detection
    56 different criteria
    57 enormous size
    58 experiments
    59 future research
    60 heritage
    61 heritage protection
    62 historical paintings
    63 historical records
    64 history
    65 images
    66 intelligence
    67 labels
    68 large amount
    69 machine
    70 method
    71 modern computer vision
    72 network
    73 new dataset
    74 numerous artists
    75 numerous historical records
    76 objects
    77 out experiments
    78 painting
    79 paper
    80 project
    81 property retrievals
    82 protection
    83 quality
    84 records
    85 representative methods
    86 research
    87 restoration
    88 results
    89 retrieval
    90 road
    91 size
    92 solution
    93 state
    94 study
    95 style
    96 style analysis
    97 style transfer
    98 such challenges
    99 technology
    100 thousands
    101 thousands of years
    102 time
    103 transfer
    104 v1.0
    105 version v1.0
    106 vision
    107 work
    108 years
    109 schema:name Artificial Intelligence for Dunhuang Cultural Heritage Protection: The Project and the Dataset
    110 schema:pagination 2646-2673
    111 schema:productId N769feba5d7ab4dd9a88d497933887034
    112 N9e22962712f54429bb06304e4db22f02
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150460628
    114 https://doi.org/10.1007/s11263-022-01665-x
    115 schema:sdDatePublished 2022-12-01T06:44
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher Nac0cc71e4ca448468d3a2113de57ac8c
    118 schema:url https://doi.org/10.1007/s11263-022-01665-x
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N0610877d02b9472fade261dcdfa41bfa rdf:first Nc28cb6cf23604dceb0b4f9ea018f6389
    123 rdf:rest N21db4c1de50348af850422b52ff4bd3f
    124 N21db4c1de50348af850422b52ff4bd3f rdf:first N543cf4394330461f8853150092f16ba8
    125 rdf:rest Ncf9be0866fdc42d2832ce880be65f63a
    126 N34b476a1a02849538df08e53f8a77314 rdf:first sg:person.016336476425.95
    127 rdf:rest N9dc01afdbfca4cdaaf6802e8cd6717f7
    128 N3817b2c4bfd8459e9993c93313711ebb rdf:first sg:person.012023746625.67
    129 rdf:rest N0610877d02b9472fade261dcdfa41bfa
    130 N3ac8cec0ab504d7e81712262acf07cc9 schema:volumeNumber 130
    131 rdf:type schema:PublicationVolume
    132 N543cf4394330461f8853150092f16ba8 schema:affiliation grid-institutes:grid.258164.c
    133 schema:familyName Liu
    134 schema:givenName Xiaoxiang
    135 rdf:type schema:Person
    136 N5fce25be4c9c4734b29216855a4f26a6 rdf:first sg:person.07350570125.11
    137 rdf:rest Ne32ee1e48a994bed8b9087f40772d43b
    138 N769feba5d7ab4dd9a88d497933887034 schema:name dimensions_id
    139 schema:value pub.1150460628
    140 rdf:type schema:PropertyValue
    141 N7fb8e6d409b04ac8a46c425c8a848953 rdf:first sg:person.015175052743.72
    142 rdf:rest rdf:nil
    143 N84f9bc970039454995aa4e5509529a4d rdf:first sg:person.010431005625.81
    144 rdf:rest Nfe7a3967af6d42948ba3169f091f33ea
    145 N9dc01afdbfca4cdaaf6802e8cd6717f7 rdf:first sg:person.07633425225.90
    146 rdf:rest N84f9bc970039454995aa4e5509529a4d
    147 N9e22962712f54429bb06304e4db22f02 schema:name doi
    148 schema:value 10.1007/s11263-022-01665-x
    149 rdf:type schema:PropertyValue
    150 Nac0cc71e4ca448468d3a2113de57ac8c schema:name Springer Nature - SN SciGraph project
    151 rdf:type schema:Organization
    152 Nc28cb6cf23604dceb0b4f9ea018f6389 schema:affiliation grid-institutes:grid.464288.4
    153 schema:familyName An
    154 schema:givenName Huili
    155 rdf:type schema:Person
    156 Ncf9be0866fdc42d2832ce880be65f63a rdf:first sg:person.015433145661.19
    157 rdf:rest Nd29613b2cbb544bfa7a094fa200f4197
    158 Nd29613b2cbb544bfa7a094fa200f4197 rdf:first sg:person.07474605515.46
    159 rdf:rest N5fce25be4c9c4734b29216855a4f26a6
    160 Ndeba501a44f647a48d4b3407639bb224 schema:issueNumber 11
    161 rdf:type schema:PublicationIssue
    162 Ne32ee1e48a994bed8b9087f40772d43b rdf:first sg:person.012621327225.28
    163 rdf:rest N7fb8e6d409b04ac8a46c425c8a848953
    164 Nfe7a3967af6d42948ba3169f091f33ea rdf:first sg:person.07545645007.21
    165 rdf:rest N3817b2c4bfd8459e9993c93313711ebb
    166 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Information and Computing Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Artificial Intelligence and Image Processing
    171 rdf:type schema:DefinedTerm
    172 sg:journal.1032807 schema:issn 0920-5691
    173 1573-1405
    174 schema:name International Journal of Computer Vision
    175 schema:publisher Springer Nature
    176 rdf:type schema:Periodical
    177 sg:person.010431005625.81 schema:affiliation grid-institutes:grid.265021.2
    178 schema:familyName Zhang
    179 schema:givenName Shijie
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431005625.81
    181 rdf:type schema:Person
    182 sg:person.012023746625.67 schema:affiliation grid-institutes:grid.464288.4
    183 schema:familyName Ding
    184 schema:givenName Xiaohong
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012023746625.67
    186 rdf:type schema:Person
    187 sg:person.012621327225.28 schema:affiliation grid-institutes:grid.464288.4
    188 schema:familyName Wu
    189 schema:givenName Jian
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621327225.28
    191 rdf:type schema:Person
    192 sg:person.015175052743.72 schema:affiliation grid-institutes:grid.33763.32
    193 schema:familyName Zhang
    194 schema:givenName Jiawan
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015175052743.72
    196 rdf:type schema:Person
    197 sg:person.015433145661.19 schema:affiliation grid-institutes:grid.258164.c
    198 schema:familyName Qu
    199 schema:givenName Ting
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015433145661.19
    201 rdf:type schema:Person
    202 sg:person.016336476425.95 schema:affiliation grid-institutes:grid.464288.4
    203 schema:familyName Yu
    204 schema:givenName Tianxiu
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336476425.95
    206 rdf:type schema:Person
    207 sg:person.07350570125.11 schema:affiliation grid-institutes:grid.7177.6
    208 schema:familyName You
    209 schema:givenName Shaodi
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350570125.11
    211 rdf:type schema:Person
    212 sg:person.07474605515.46 schema:affiliation grid-institutes:grid.33763.32
    213 schema:familyName Wan
    214 schema:givenName Liang
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07474605515.46
    216 rdf:type schema:Person
    217 sg:person.07545645007.21 schema:affiliation grid-institutes:grid.464288.4
    218 schema:familyName Wang
    219 schema:givenName Chunxue
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545645007.21
    221 rdf:type schema:Person
    222 sg:person.07633425225.90 schema:affiliation grid-institutes:grid.258164.c
    223 schema:familyName Lin
    224 schema:givenName Cong
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633425225.90
    226 rdf:type schema:Person
    227 sg:pub.10.1007/978-3-030-01216-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107502557
    228 https://doi.org/10.1007/978-3-030-01216-8_1
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/978-3-030-01237-3_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107463328
    231 https://doi.org/10.1007/978-3-030-01237-3_43
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/978-3-030-01252-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107454764
    234 https://doi.org/10.1007/978-3-030-01252-6_6
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/978-3-030-37191-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126270703
    237 https://doi.org/10.1007/978-3-030-37191-3_7
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/978-3-030-58545-7_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132333993
    240 https://doi.org/10.1007/978-3-030-58545-7_19
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/978-3-319-10602-1_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045321436
    243 https://doi.org/10.1007/978-3-319-10602-1_48
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
    246 https://doi.org/10.1007/978-3-319-24574-4_28
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/978-3-319-46448-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017177111
    249 https://doi.org/10.1007/978-3-319-46448-0_2
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/978-3-319-46475-6_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018034649
    252 https://doi.org/10.1007/978-3-319-46475-6_43
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s11263-007-0104-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027360020
    255 https://doi.org/10.1007/s11263-007-0104-6
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s11263-009-0275-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014796149
    258 https://doi.org/10.1007/s11263-009-0275-4
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s11263-010-0397-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032536926
    261 https://doi.org/10.1007/s11263-010-0397-8
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
    264 https://doi.org/10.1007/s11263-015-0816-y
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1023/a:1026553619983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036231609
    267 https://doi.org/10.1023/a:1026553619983
    268 rdf:type schema:CreativeWork
    269 grid-institutes:grid.258164.c schema:alternateName Jinan University, Guangzhou, China
    270 schema:name Jinan University, Guangzhou, China
    271 rdf:type schema:Organization
    272 grid-institutes:grid.265021.2 schema:alternateName Tianjin Medical University, Tianjin, China
    273 schema:name Tianjin Medical University, Tianjin, China
    274 rdf:type schema:Organization
    275 grid-institutes:grid.33763.32 schema:alternateName College of Intelligence and Computing, Tianjin University, Tianjin, China
    276 schema:name College of Intelligence and Computing, Tianjin University, Tianjin, China
    277 rdf:type schema:Organization
    278 grid-institutes:grid.464288.4 schema:alternateName Dunhuang Academy, Dunhuang, Gansu, China
    279 schema:name College of Intelligence and Computing, Tianjin University, Tianjin, China
    280 Dunhuang Academy, Dunhuang, Gansu, China
    281 rdf:type schema:Organization
    282 grid-institutes:grid.7177.6 schema:alternateName University of Amsterdam, Amsterdam, The Netherlands
    283 schema:name University of Amsterdam, Amsterdam, The Netherlands
    284 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...