Describing Upper-Body Motions Based on Labanotation for Learning-from-Observation Robots View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Katsushi Ikeuchi, Zhaoyuan Ma, Zengqiang Yan, Shunsuke Kudoh, Minako Nakamura

ABSTRACT

We have been developing a paradigm that we call learning-from-observation for a robot to automatically acquire a robot program to conduct a series of operations, or for a robot to understand what to do, through observing humans performing the same operations. Since a simple mimicking method to repeat exact joint angles or exact end-effector trajectories does not work well because of the kinematic and dynamic differences between a human and a robot, the proposed method employs intermediate symbolic representations, tasks, for conceptually representing what-to-do through observation. These tasks are subsequently mapped to appropriate robot operations depending on the robot hardware. In the present work, task models for upper-body operations of humanoid robots are presented, which are designed on the basis of Labanotation. Given a series of human operations, we first analyze the upper-body motions and extract certain fixed poses from key frames. These key poses are translated into tasks represented by Labanotation symbols. Then, a robot performs the operations corresponding to those task models. Because tasks based on Labanotation are independent of robot hardware, different robots can share the same observation module, and only different task-mapping modules specific to robot hardware are required. The system was implemented and demonstrated that three different robots can automatically mimic human upper-body operations with a satisfactory level of resemblance. More... »

PAGES

1415-1429

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11263-018-1123-1

DOI

http://dx.doi.org/10.1007/s11263-018-1123-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107414872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Corporation, Redmond, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikeuchi", 
        "givenName": "Katsushi", 
        "id": "sg:person.015127126261.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127126261.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Worcester Polytechnic Institute", 
          "id": "https://www.grid.ac/institutes/grid.268323.e", 
          "name": [
            "Worcester Polytechnic Institute, Worcester, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Zhaoyuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hong Kong University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.24515.37", 
          "name": [
            "Hong Kong University of Science and Technology, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Zengqiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Electro-Communications", 
          "id": "https://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "University of Electro-Communications, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudoh", 
        "givenName": "Shunsuke", 
        "id": "sg:person.014467042650.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014467042650.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ochanomizu University", 
          "id": "https://www.grid.ac/institutes/grid.412314.1", 
          "name": [
            "Ochanomizu University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Minako", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.7210/jrsj.17.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024079417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15552-9_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032055412", 
          "https://doi.org/10.1007/978-3-642-15552-9_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15552-9_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032055412", 
          "https://doi.org/10.1007/978-3-642-15552-9_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0043158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032537563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1997.0108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037811788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364907079430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053262276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364907079430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053262276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263574714001477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053950699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/70.294211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061216088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2012.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2015.2439257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tra.2003.810579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tra.2003.817067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2005.855988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2007.906261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2009.2019783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.1984.1172729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086202091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.1992.601948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086364171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13640-017-0202-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090939110", 
          "https://doi.org/10.1186/s13640-017-0202-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13640-017-0202-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090939110", 
          "https://doi.org/10.1186/s13640-017-0202-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093254042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2006.1642260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093586688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093593846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icorr.2007.4428436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093684335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2003.1249691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093757519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093855383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093894837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093894837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094359705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2003.1249304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094596305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094630240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icra.2013.6631333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094678921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2007.4399244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094729878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acc.2012.6315287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094752991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6247813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094880165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2005.1545530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095103365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2003.1241639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095314865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1993.291879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095767618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2002.1014737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095778906"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We have been developing a paradigm that we call learning-from-observation for a robot to automatically acquire a robot program to conduct a series of operations, or for a robot to understand what to do, through observing humans performing the same operations. Since a simple mimicking method to repeat exact joint angles or exact end-effector trajectories does not work well because of the kinematic and dynamic differences between a human and a robot, the proposed method employs intermediate symbolic representations, tasks, for conceptually representing what-to-do through observation. These tasks are subsequently mapped to appropriate robot operations depending on the robot hardware. In the present work, task models for upper-body operations of humanoid robots are presented, which are designed on the basis of Labanotation. Given a series of human operations, we first analyze the upper-body motions and extract certain fixed poses from key frames. These key poses are translated into tasks represented by Labanotation symbols. Then, a robot performs the operations corresponding to those task models. Because tasks based on Labanotation are independent of robot hardware, different robots can share the same observation module, and only different task-mapping modules specific to robot hardware are required. The system was implemented and demonstrated that three different robots can automatically mimic human upper-body operations with a satisfactory level of resemblance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11263-018-1123-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032807", 
        "issn": [
          "0920-5691", 
          "1573-1405"
        ], 
        "name": "International Journal of Computer Vision", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "126"
      }
    ], 
    "name": "Describing Upper-Body Motions Based on Labanotation for Learning-from-Observation Robots", 
    "pagination": "1415-1429", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "084204b16d9d8101ce5918f4c706ff72e40a7341cbad90d450846eff5c30f3b8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11263-018-1123-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107414872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11263-018-1123-1", 
      "https://app.dimensions.ai/details/publication/pub.1107414872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000576.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11263-018-1123-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11263-018-1123-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11263-018-1123-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11263-018-1123-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11263-018-1123-1'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11263-018-1123-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N28b73ee7051d483293c11a837625db6a
4 schema:citation sg:pub.10.1007/978-3-642-15552-9_29
5 sg:pub.10.1186/s13640-017-0202-5
6 https://doi.org/10.1017/s0263574714001477
7 https://doi.org/10.1037/h0043158
8 https://doi.org/10.1098/rstb.1997.0108
9 https://doi.org/10.1109/70.294211
10 https://doi.org/10.1109/acc.2012.6315287
11 https://doi.org/10.1109/cvpr.2008.4587727
12 https://doi.org/10.1109/cvpr.2009.5206557
13 https://doi.org/10.1109/cvpr.2010.5539881
14 https://doi.org/10.1109/cvpr.2012.6247813
15 https://doi.org/10.1109/cvpr.2013.330
16 https://doi.org/10.1109/icassp.1984.1172729
17 https://doi.org/10.1109/iccv.2013.441
18 https://doi.org/10.1109/iccv.2015.368
19 https://doi.org/10.1109/icorr.2007.4428436
20 https://doi.org/10.1109/icra.2013.6631333
21 https://doi.org/10.1109/iros.1992.601948
22 https://doi.org/10.1109/iros.2003.1249304
23 https://doi.org/10.1109/iros.2003.1249691
24 https://doi.org/10.1109/iros.2005.1545530
25 https://doi.org/10.1109/iros.2007.4399244
26 https://doi.org/10.1109/robot.1993.291879
27 https://doi.org/10.1109/robot.2002.1014737
28 https://doi.org/10.1109/robot.2003.1241639
29 https://doi.org/10.1109/robot.2006.1642260
30 https://doi.org/10.1109/tpami.2012.59
31 https://doi.org/10.1109/tpami.2015.2439257
32 https://doi.org/10.1109/tra.2003.810579
33 https://doi.org/10.1109/tra.2003.817067
34 https://doi.org/10.1109/tro.2005.855988
35 https://doi.org/10.1109/tro.2007.906261
36 https://doi.org/10.1109/tro.2009.2019783
37 https://doi.org/10.1177/0278364907079430
38 https://doi.org/10.7210/jrsj.17.268
39 schema:datePublished 2018-12
40 schema:datePublishedReg 2018-12-01
41 schema:description We have been developing a paradigm that we call learning-from-observation for a robot to automatically acquire a robot program to conduct a series of operations, or for a robot to understand what to do, through observing humans performing the same operations. Since a simple mimicking method to repeat exact joint angles or exact end-effector trajectories does not work well because of the kinematic and dynamic differences between a human and a robot, the proposed method employs intermediate symbolic representations, tasks, for conceptually representing what-to-do through observation. These tasks are subsequently mapped to appropriate robot operations depending on the robot hardware. In the present work, task models for upper-body operations of humanoid robots are presented, which are designed on the basis of Labanotation. Given a series of human operations, we first analyze the upper-body motions and extract certain fixed poses from key frames. These key poses are translated into tasks represented by Labanotation symbols. Then, a robot performs the operations corresponding to those task models. Because tasks based on Labanotation are independent of robot hardware, different robots can share the same observation module, and only different task-mapping modules specific to robot hardware are required. The system was implemented and demonstrated that three different robots can automatically mimic human upper-body operations with a satisfactory level of resemblance.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf Na85de10cae594c29a9a0e148865830d2
46 Nac086264319c4f96b238739d058d16c7
47 sg:journal.1032807
48 schema:name Describing Upper-Body Motions Based on Labanotation for Learning-from-Observation Robots
49 schema:pagination 1415-1429
50 schema:productId N38f8c7fb85f543d3868b30e0f92de212
51 N5374f59138a04656bb6d4b3722c56a2d
52 Nc3444a184e0440f7845326b393779ca0
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107414872
54 https://doi.org/10.1007/s11263-018-1123-1
55 schema:sdDatePublished 2019-04-11T00:26
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N4bc82bc5a3544425a84c61e3d791414b
58 schema:url https://link.springer.com/10.1007%2Fs11263-018-1123-1
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N28b73ee7051d483293c11a837625db6a rdf:first sg:person.015127126261.95
63 rdf:rest N36aa2edd38e64ec8addbd2b791430850
64 N36aa2edd38e64ec8addbd2b791430850 rdf:first N83ca101047e3454b85fb5bb74519bf80
65 rdf:rest Ne9b84b35b776468ab50e93b2dac70935
66 N38f8c7fb85f543d3868b30e0f92de212 schema:name readcube_id
67 schema:value 084204b16d9d8101ce5918f4c706ff72e40a7341cbad90d450846eff5c30f3b8
68 rdf:type schema:PropertyValue
69 N4bc82bc5a3544425a84c61e3d791414b schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N5374f59138a04656bb6d4b3722c56a2d schema:name doi
72 schema:value 10.1007/s11263-018-1123-1
73 rdf:type schema:PropertyValue
74 N59a5e3f5024f4632aa9dea05fcd7e32f rdf:first sg:person.014467042650.84
75 rdf:rest N82fcef15d9e941d096ced24effe19d8c
76 N788bf6c8b5f5419086c76b42829476a9 schema:affiliation https://www.grid.ac/institutes/grid.412314.1
77 schema:familyName Nakamura
78 schema:givenName Minako
79 rdf:type schema:Person
80 N82fcef15d9e941d096ced24effe19d8c rdf:first N788bf6c8b5f5419086c76b42829476a9
81 rdf:rest rdf:nil
82 N83ca101047e3454b85fb5bb74519bf80 schema:affiliation https://www.grid.ac/institutes/grid.268323.e
83 schema:familyName Ma
84 schema:givenName Zhaoyuan
85 rdf:type schema:Person
86 Na85de10cae594c29a9a0e148865830d2 schema:issueNumber 12
87 rdf:type schema:PublicationIssue
88 Nac086264319c4f96b238739d058d16c7 schema:volumeNumber 126
89 rdf:type schema:PublicationVolume
90 Nc3444a184e0440f7845326b393779ca0 schema:name dimensions_id
91 schema:value pub.1107414872
92 rdf:type schema:PropertyValue
93 Nd09566017afd4921a7fb16c2f0aa5e4d schema:affiliation https://www.grid.ac/institutes/grid.24515.37
94 schema:familyName Yan
95 schema:givenName Zengqiang
96 rdf:type schema:Person
97 Ne9b84b35b776468ab50e93b2dac70935 rdf:first Nd09566017afd4921a7fb16c2f0aa5e4d
98 rdf:rest N59a5e3f5024f4632aa9dea05fcd7e32f
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:journal.1032807 schema:issn 0920-5691
106 1573-1405
107 schema:name International Journal of Computer Vision
108 rdf:type schema:Periodical
109 sg:person.014467042650.84 schema:affiliation https://www.grid.ac/institutes/grid.266298.1
110 schema:familyName Kudoh
111 schema:givenName Shunsuke
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014467042650.84
113 rdf:type schema:Person
114 sg:person.015127126261.95 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
115 schema:familyName Ikeuchi
116 schema:givenName Katsushi
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127126261.95
118 rdf:type schema:Person
119 sg:pub.10.1007/978-3-642-15552-9_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032055412
120 https://doi.org/10.1007/978-3-642-15552-9_29
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/s13640-017-0202-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090939110
123 https://doi.org/10.1186/s13640-017-0202-5
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1017/s0263574714001477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053950699
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1037/h0043158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032537563
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1098/rstb.1997.0108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037811788
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/70.294211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061216088
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/acc.2012.6315287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094752991
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/cvpr.2008.4587727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094359705
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/cvpr.2009.5206557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093593846
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/cvpr.2010.5539881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094630240
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/cvpr.2012.6247813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094880165
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/cvpr.2013.330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093894837
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/icassp.1984.1172729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086202091
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/iccv.2013.441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093254042
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iccv.2015.368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093855383
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/icorr.2007.4428436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093684335
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/icra.2013.6631333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094678921
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/iros.1992.601948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086364171
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/iros.2003.1249304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094596305
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/iros.2003.1249691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093757519
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/iros.2005.1545530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095103365
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/iros.2007.4399244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094729878
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/robot.1993.291879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095767618
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/robot.2002.1014737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095778906
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/robot.2003.1241639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095314865
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/robot.2006.1642260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093586688
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tpami.2012.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744395
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tpami.2015.2439257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744882
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tra.2003.810579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784263
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tra.2003.817067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784292
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tro.2005.855988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784573
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tro.2007.906261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784798
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tro.2009.2019783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785036
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1177/0278364907079430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053262276
188 rdf:type schema:CreativeWork
189 https://doi.org/10.7210/jrsj.17.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024079417
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.24515.37 schema:alternateName Hong Kong University of Science and Technology
192 schema:name Hong Kong University of Science and Technology, Hong Kong, China
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.266298.1 schema:alternateName University of Electro-Communications
195 schema:name University of Electro-Communications, Tokyo, Japan
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.268323.e schema:alternateName Worcester Polytechnic Institute
198 schema:name Worcester Polytechnic Institute, Worcester, USA
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.412314.1 schema:alternateName Ochanomizu University
201 schema:name Ochanomizu University, Tokyo, Japan
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
204 schema:name Microsoft Corporation, Redmond, USA
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...