Context-Based Path Prediction for Targets with Switching Dynamics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Julian F. P. Kooij, Fabian Flohr, Ewoud A. I. Pool, Dariu M. Gavrila

ABSTRACT

Anticipating future situations from streaming sensor data is a key perception challenge for mobile robotics and automated vehicles. We address the problem of predicting the path of objects with multiple dynamic modes. The dynamics of such targets can be described by a Switching Linear Dynamical System (SLDS). However, predictions from this probabilistic model cannot anticipate when a change in dynamic mode will occur. We propose to extract various types of cues with computer vision to provide context on the target’s behavior, and incorporate these in a Dynamic Bayesian Network (DBN). The DBN extends the SLDS by conditioning the mode transition probabilities on additional context states. We describe efficient online inference in this DBN for probabilistic path prediction, accounting for uncertainty in both measurements and target behavior. Our approach is illustrated on two scenarios in the Intelligent Vehicles domain concerning pedestrians and cyclists, so-called Vulnerable Road Users (VRUs). Here, context cues include the static environment of the VRU, its dynamic environment, and its observed actions. Experiments using stereo vision data from a moving vehicle demonstrate that the proposed approach results in more accurate path prediction than SLDS at the relevant short time horizon (1 s). It slightly outperforms a computationally more demanding state-of-the-art method. More... »

PAGES

239-262

References to SciGraph publications

  • 2016. Knowledge Transfer for Scene-Specific Motion Prediction in COMPUTER VISION – ECCV 2016
  • 2014. Context-Based Pedestrian Path Prediction in COMPUTER VISION – ECCV 2014
  • 2006-08. Behavioral Priors for Detection and Tracking of Pedestrians in Video Sequences in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2016. SSD: Single Shot MultiBox Detector in COMPUTER VISION – ECCV 2016
  • 2012. Activity Forecasting in COMPUTER VISION – ECCV 2012
  • 2016. Learning Social Etiquette: Human Trajectory Understanding In Crowded Scenes in COMPUTER VISION – ECCV 2016
  • 2016. Pedestrian Behavior Understanding and Prediction with Deep Neural Networks in COMPUTER VISION – ECCV 2016
  • 2013. Intention-Aware Motion Planning in ALGORITHMIC FOUNDATIONS OF ROBOTICS X
  • 2008-05. Learning and Inferring Motion Patterns using Parametric Segmental Switching Linear Dynamic Systems in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2013. Pedestrian Path Prediction with Recursive Bayesian Filters: A Comparative Study in PATTERN RECOGNITION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11263-018-1104-4

    DOI

    http://dx.doi.org/10.1007/s11263-018-1104-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105270501


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kooij", 
            "givenName": "Julian F. P.", 
            "id": "sg:person.0625061075.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625061075.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Daimler (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.5433.1", 
              "name": [
                "Department of Environment Perception, Daimler AG, Wilhelm-Runge-Str. 11, 89081, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Flohr", 
            "givenName": "Fabian", 
            "id": "sg:person.016321535257.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016321535257.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Amsterdam", 
              "id": "https://www.grid.ac/institutes/grid.7177.6", 
              "name": [
                "AMLab, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pool", 
            "givenName": "Ewoud A. I.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Amsterdam", 
              "id": "https://www.grid.ac/institutes/grid.7177.6", 
              "name": [
                "Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands", 
                "AMLab, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gavrila", 
            "givenName": "Dariu M.", 
            "id": "sg:person.0774760726.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774760726.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.trc.2016.07.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005532239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-007-0062-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009426629", 
              "https://doi.org/10.1007/s11263-007-0062-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trf.2009.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010034387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46448-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017177111", 
              "https://doi.org/10.1007/978-3-319-46448-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46448-0_42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018385371", 
              "https://doi.org/10.1007/978-3-319-46448-0_42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(98)00108-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018489881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ssci.2013.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018657507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.51.4282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028250488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.51.4282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028250488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aap.2015.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030360197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-36279-8_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030822235", 
              "https://doi.org/10.1007/978-3-642-36279-8_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/361237.361242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037839065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10599-4_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038185265", 
              "https://doi.org/10.1007/978-3-319-10599-4_40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40602-7_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039502280", 
              "https://doi.org/10.1007/978-3-642-40602-7_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46484-8_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039708172", 
              "https://doi.org/10.1007/978-3-319-46484-8_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46448-0_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047160275", 
              "https://doi.org/10.1007/978-3-319-46448-0_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33765-9_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047992655", 
              "https://doi.org/10.1007/978-3-642-33765-9_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-005-4797-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049525255", 
              "https://doi.org/10.1007/s11263-005-4797-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1992.10476265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2016.2597744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061632926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tits.2009.2018966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061657578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tits.2011.2158424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061657821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tits.2013.2280766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061658233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tits.2014.2299340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061658311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tits.2014.2379441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061658584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tits.2016.2567418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061659033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tiv.2016.2571067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061659212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tiv.2016.2578706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061659214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.1166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2008.260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2010.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2011.155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2011.64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2013.185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2015.2443801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/access.2017.2703816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085511150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2017.2705103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086007062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lra.2017.2719762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1087303074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2016.7795763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093178469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2017.544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093192734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2016.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093423325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2014.6957847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093461371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2008.4732706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093523509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2017.233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093539959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2016.7535425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093621149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2013.6629520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093709943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2016.7535421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093916824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2017.7995856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093922814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.2004.1326109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093996199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2017.7995728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094302130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2017.7995730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094343627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2002.1187920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094368957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2013.6629509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094392715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccvw.2015.28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094401443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2017.7995905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094478206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2015.7225754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094495366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2012.6385599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094557128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2016.350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094706336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2013.6629455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094720233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2015.323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094807831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2016.7535515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094979156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icra.2011.5980482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095016557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2017.7995734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095036755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2016.7535484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095151632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2010.5540110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095168998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2012.6248074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095200328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2017.7995950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095238591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icra.2016.7487409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095312717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2009.5459260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095404175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2008.4621191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095635755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2015.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095692425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095719726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivs.2014.6856505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095744353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2016.91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095811486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2017.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095837104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.30.68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096897095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471221279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471221279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.23.14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099325627"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "Anticipating future situations from streaming sensor data is a key perception challenge for mobile robotics and automated vehicles. We address the problem of predicting the path of objects with multiple dynamic modes. The dynamics of such targets can be described by a Switching Linear Dynamical System (SLDS). However, predictions from this probabilistic model cannot anticipate when a change in dynamic mode will occur. We propose to extract various types of cues with computer vision to provide context on the target\u2019s behavior, and incorporate these in a Dynamic Bayesian Network (DBN). The DBN extends the SLDS by conditioning the mode transition probabilities on additional context states. We describe efficient online inference in this DBN for probabilistic path prediction, accounting for uncertainty in both measurements and target behavior. Our approach is illustrated on two scenarios in the Intelligent Vehicles domain concerning pedestrians and cyclists, so-called Vulnerable Road Users (VRUs). Here, context cues include the static environment of the VRU, its dynamic environment, and its observed actions. Experiments using stereo vision data from a moving vehicle demonstrate that the proposed approach results in more accurate path prediction than SLDS at the relevant short time horizon (1 s). It slightly outperforms a computationally more demanding state-of-the-art method.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11263-018-1104-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3938334", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1032807", 
            "issn": [
              "0920-5691", 
              "1573-1405"
            ], 
            "name": "International Journal of Computer Vision", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "127"
          }
        ], 
        "name": "Context-Based Path Prediction for Targets with Switching Dynamics", 
        "pagination": "239-262", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e470a42dd20506ad8961e921b7658e4d6790bf97286820314896dda981e0a37a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11263-018-1104-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105270501"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11263-018-1104-4", 
          "https://app.dimensions.ai/details/publication/pub.1105270501"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11263-018-1104-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11263-018-1104-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11263-018-1104-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11263-018-1104-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11263-018-1104-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    331 TRIPLES      21 PREDICATES      104 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11263-018-1104-4 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N935fa02415b049d183959efab17810a4
    4 schema:citation sg:pub.10.1007/978-3-319-10599-4_40
    5 sg:pub.10.1007/978-3-319-46448-0_16
    6 sg:pub.10.1007/978-3-319-46448-0_2
    7 sg:pub.10.1007/978-3-319-46448-0_42
    8 sg:pub.10.1007/978-3-319-46484-8_33
    9 sg:pub.10.1007/978-3-642-33765-9_15
    10 sg:pub.10.1007/978-3-642-36279-8_29
    11 sg:pub.10.1007/978-3-642-40602-7_18
    12 sg:pub.10.1007/s11263-005-4797-0
    13 sg:pub.10.1007/s11263-007-0062-z
    14 https://doi.org/10.1002/0471221279
    15 https://doi.org/10.1016/j.aap.2015.08.007
    16 https://doi.org/10.1016/j.ssci.2013.05.009
    17 https://doi.org/10.1016/j.trc.2016.07.011
    18 https://doi.org/10.1016/j.trf.2009.02.003
    19 https://doi.org/10.1016/s0262-8856(98)00108-5
    20 https://doi.org/10.1080/01621459.1992.10476265
    21 https://doi.org/10.1103/physreve.51.4282
    22 https://doi.org/10.1109/access.2017.2703816
    23 https://doi.org/10.1109/cvpr.2010.5540110
    24 https://doi.org/10.1109/cvpr.2012.6248074
    25 https://doi.org/10.1109/cvpr.2015.7298925
    26 https://doi.org/10.1109/cvpr.2016.110
    27 https://doi.org/10.1109/cvpr.2016.350
    28 https://doi.org/10.1109/cvpr.2016.91
    29 https://doi.org/10.1109/cvpr.2017.143
    30 https://doi.org/10.1109/cvpr.2017.233
    31 https://doi.org/10.1109/cvpr.2017.544
    32 https://doi.org/10.1109/icassp.2004.1326109
    33 https://doi.org/10.1109/iccv.2009.5459260
    34 https://doi.org/10.1109/iccvw.2015.28
    35 https://doi.org/10.1109/icra.2011.5980482
    36 https://doi.org/10.1109/icra.2016.7487409
    37 https://doi.org/10.1109/iros.2012.6385599
    38 https://doi.org/10.1109/itsc.2008.4732706
    39 https://doi.org/10.1109/itsc.2014.6957847
    40 https://doi.org/10.1109/itsc.2015.323
    41 https://doi.org/10.1109/itsc.2015.37
    42 https://doi.org/10.1109/itsc.2016.7795763
    43 https://doi.org/10.1109/ivs.2002.1187920
    44 https://doi.org/10.1109/ivs.2008.4621191
    45 https://doi.org/10.1109/ivs.2013.6629455
    46 https://doi.org/10.1109/ivs.2013.6629509
    47 https://doi.org/10.1109/ivs.2013.6629520
    48 https://doi.org/10.1109/ivs.2014.6856505
    49 https://doi.org/10.1109/ivs.2015.7225754
    50 https://doi.org/10.1109/ivs.2016.7535421
    51 https://doi.org/10.1109/ivs.2016.7535425
    52 https://doi.org/10.1109/ivs.2016.7535484
    53 https://doi.org/10.1109/ivs.2016.7535515
    54 https://doi.org/10.1109/ivs.2017.7995728
    55 https://doi.org/10.1109/ivs.2017.7995730
    56 https://doi.org/10.1109/ivs.2017.7995734
    57 https://doi.org/10.1109/ivs.2017.7995856
    58 https://doi.org/10.1109/ivs.2017.7995905
    59 https://doi.org/10.1109/ivs.2017.7995950
    60 https://doi.org/10.1109/lra.2017.2719762
    61 https://doi.org/10.1109/tii.2016.2597744
    62 https://doi.org/10.1109/tits.2009.2018966
    63 https://doi.org/10.1109/tits.2011.2158424
    64 https://doi.org/10.1109/tits.2013.2280766
    65 https://doi.org/10.1109/tits.2014.2299340
    66 https://doi.org/10.1109/tits.2014.2379441
    67 https://doi.org/10.1109/tits.2016.2567418
    68 https://doi.org/10.1109/tiv.2016.2571067
    69 https://doi.org/10.1109/tiv.2016.2578706
    70 https://doi.org/10.1109/tpami.2007.1166
    71 https://doi.org/10.1109/tpami.2008.260
    72 https://doi.org/10.1109/tpami.2010.69
    73 https://doi.org/10.1109/tpami.2011.155
    74 https://doi.org/10.1109/tpami.2011.64
    75 https://doi.org/10.1109/tpami.2013.185
    76 https://doi.org/10.1109/tpami.2015.2443801
    77 https://doi.org/10.1109/tro.2017.2705103
    78 https://doi.org/10.1145/361237.361242
    79 https://doi.org/10.5244/c.23.14
    80 https://doi.org/10.5244/c.30.68
    81 schema:datePublished 2019-03
    82 schema:datePublishedReg 2019-03-01
    83 schema:description Anticipating future situations from streaming sensor data is a key perception challenge for mobile robotics and automated vehicles. We address the problem of predicting the path of objects with multiple dynamic modes. The dynamics of such targets can be described by a Switching Linear Dynamical System (SLDS). However, predictions from this probabilistic model cannot anticipate when a change in dynamic mode will occur. We propose to extract various types of cues with computer vision to provide context on the target’s behavior, and incorporate these in a Dynamic Bayesian Network (DBN). The DBN extends the SLDS by conditioning the mode transition probabilities on additional context states. We describe efficient online inference in this DBN for probabilistic path prediction, accounting for uncertainty in both measurements and target behavior. Our approach is illustrated on two scenarios in the Intelligent Vehicles domain concerning pedestrians and cyclists, so-called Vulnerable Road Users (VRUs). Here, context cues include the static environment of the VRU, its dynamic environment, and its observed actions. Experiments using stereo vision data from a moving vehicle demonstrate that the proposed approach results in more accurate path prediction than SLDS at the relevant short time horizon (1 s). It slightly outperforms a computationally more demanding state-of-the-art method.
    84 schema:genre research_article
    85 schema:inLanguage en
    86 schema:isAccessibleForFree true
    87 schema:isPartOf N07039f9f0f8646e6b95d331f7c255912
    88 Ne9c12eaeb8ab40cda563c3ca4d297311
    89 sg:journal.1032807
    90 schema:name Context-Based Path Prediction for Targets with Switching Dynamics
    91 schema:pagination 239-262
    92 schema:productId N8f93c1f2c4ce4f54847ffe70581018cb
    93 Nd66c3641e6054f2b8f00a5535c1dbf8b
    94 Ne140a6063e584c0983deadb822fa51bb
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105270501
    96 https://doi.org/10.1007/s11263-018-1104-4
    97 schema:sdDatePublished 2019-04-11T09:31
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N5699a589ac674d77a6af4a357c2e390a
    100 schema:url https://link.springer.com/10.1007%2Fs11263-018-1104-4
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N07039f9f0f8646e6b95d331f7c255912 schema:volumeNumber 127
    105 rdf:type schema:PublicationVolume
    106 N5699a589ac674d77a6af4a357c2e390a schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N856f3ae9e18d4b89af7e35075f5d3356 rdf:first sg:person.016321535257.33
    109 rdf:rest Ne14c98c88aed480f8b4974bd2df454f6
    110 N8f93c1f2c4ce4f54847ffe70581018cb schema:name readcube_id
    111 schema:value e470a42dd20506ad8961e921b7658e4d6790bf97286820314896dda981e0a37a
    112 rdf:type schema:PropertyValue
    113 N935fa02415b049d183959efab17810a4 rdf:first sg:person.0625061075.09
    114 rdf:rest N856f3ae9e18d4b89af7e35075f5d3356
    115 Na9190fce3b694b8da804016ac1f2c284 rdf:first sg:person.0774760726.59
    116 rdf:rest rdf:nil
    117 Nd66c3641e6054f2b8f00a5535c1dbf8b schema:name doi
    118 schema:value 10.1007/s11263-018-1104-4
    119 rdf:type schema:PropertyValue
    120 Ne140a6063e584c0983deadb822fa51bb schema:name dimensions_id
    121 schema:value pub.1105270501
    122 rdf:type schema:PropertyValue
    123 Ne14c98c88aed480f8b4974bd2df454f6 rdf:first Ned7dbdf521d5478880bb7c5b85469536
    124 rdf:rest Na9190fce3b694b8da804016ac1f2c284
    125 Ne9c12eaeb8ab40cda563c3ca4d297311 schema:issueNumber 3
    126 rdf:type schema:PublicationIssue
    127 Ned7dbdf521d5478880bb7c5b85469536 schema:affiliation https://www.grid.ac/institutes/grid.7177.6
    128 schema:familyName Pool
    129 schema:givenName Ewoud A. I.
    130 rdf:type schema:Person
    131 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Information and Computing Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Artificial Intelligence and Image Processing
    136 rdf:type schema:DefinedTerm
    137 sg:grant.3938334 http://pending.schema.org/fundedItem sg:pub.10.1007/s11263-018-1104-4
    138 rdf:type schema:MonetaryGrant
    139 sg:journal.1032807 schema:issn 0920-5691
    140 1573-1405
    141 schema:name International Journal of Computer Vision
    142 rdf:type schema:Periodical
    143 sg:person.016321535257.33 schema:affiliation https://www.grid.ac/institutes/grid.5433.1
    144 schema:familyName Flohr
    145 schema:givenName Fabian
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016321535257.33
    147 rdf:type schema:Person
    148 sg:person.0625061075.09 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    149 schema:familyName Kooij
    150 schema:givenName Julian F. P.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625061075.09
    152 rdf:type schema:Person
    153 sg:person.0774760726.59 schema:affiliation https://www.grid.ac/institutes/grid.7177.6
    154 schema:familyName Gavrila
    155 schema:givenName Dariu M.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774760726.59
    157 rdf:type schema:Person
    158 sg:pub.10.1007/978-3-319-10599-4_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038185265
    159 https://doi.org/10.1007/978-3-319-10599-4_40
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/978-3-319-46448-0_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047160275
    162 https://doi.org/10.1007/978-3-319-46448-0_16
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/978-3-319-46448-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017177111
    165 https://doi.org/10.1007/978-3-319-46448-0_2
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/978-3-319-46448-0_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018385371
    168 https://doi.org/10.1007/978-3-319-46448-0_42
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/978-3-319-46484-8_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039708172
    171 https://doi.org/10.1007/978-3-319-46484-8_33
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/978-3-642-33765-9_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047992655
    174 https://doi.org/10.1007/978-3-642-33765-9_15
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/978-3-642-36279-8_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030822235
    177 https://doi.org/10.1007/978-3-642-36279-8_29
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/978-3-642-40602-7_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039502280
    180 https://doi.org/10.1007/978-3-642-40602-7_18
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s11263-005-4797-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049525255
    183 https://doi.org/10.1007/s11263-005-4797-0
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s11263-007-0062-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009426629
    186 https://doi.org/10.1007/s11263-007-0062-z
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1002/0471221279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661044
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.aap.2015.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030360197
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.ssci.2013.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018657507
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.trc.2016.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532239
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.trf.2009.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010034387
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/s0262-8856(98)00108-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018489881
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1080/01621459.1992.10476265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304349
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1103/physreve.51.4282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028250488
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1109/access.2017.2703816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085511150
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1109/cvpr.2010.5540110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095168998
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1109/cvpr.2012.6248074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095200328
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1109/cvpr.2015.7298925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095719726
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1109/cvpr.2016.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093423325
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1109/cvpr.2016.350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094706336
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1109/cvpr.2016.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095811486
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1109/cvpr.2017.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095837104
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1109/cvpr.2017.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093539959
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/cvpr.2017.544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093192734
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1109/icassp.2004.1326109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093996199
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1109/iccv.2009.5459260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095404175
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1109/iccvw.2015.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094401443
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1109/icra.2011.5980482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095016557
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1109/icra.2016.7487409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095312717
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1109/iros.2012.6385599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094557128
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1109/itsc.2008.4732706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093523509
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1109/itsc.2014.6957847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093461371
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1109/itsc.2015.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094807831
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1109/itsc.2015.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095692425
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1109/itsc.2016.7795763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093178469
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1109/ivs.2002.1187920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094368957
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1109/ivs.2008.4621191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095635755
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1109/ivs.2013.6629455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094720233
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1109/ivs.2013.6629509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094392715
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1109/ivs.2013.6629520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093709943
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1109/ivs.2014.6856505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095744353
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1109/ivs.2015.7225754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094495366
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1109/ivs.2016.7535421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093916824
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1109/ivs.2016.7535425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093621149
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1109/ivs.2016.7535484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095151632
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1109/ivs.2016.7535515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094979156
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1109/ivs.2017.7995728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094302130
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1109/ivs.2017.7995730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094343627
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1109/ivs.2017.7995734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095036755
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1109/ivs.2017.7995856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093922814
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1109/ivs.2017.7995905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094478206
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1109/ivs.2017.7995950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095238591
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1109/lra.2017.2719762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087303074
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1109/tii.2016.2597744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632926
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1109/tits.2009.2018966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657578
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1109/tits.2011.2158424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657821
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1109/tits.2013.2280766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658233
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1109/tits.2014.2299340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658311
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1109/tits.2014.2379441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658584
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1109/tits.2016.2567418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061659033
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1109/tiv.2016.2571067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061659212
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1109/tiv.2016.2578706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061659214
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1109/tpami.2007.1166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743288
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1109/tpami.2008.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743594
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1109/tpami.2010.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743987
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1109/tpami.2011.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744049
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1109/tpami.2011.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744196
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1109/tpami.2013.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744492
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1109/tpami.2015.2443801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744891
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1109/tro.2017.2705103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086007062
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1145/361237.361242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037839065
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.5244/c.23.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099325627
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.5244/c.30.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096897095
    321 rdf:type schema:CreativeWork
    322 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
    323 schema:name Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
    324 rdf:type schema:Organization
    325 https://www.grid.ac/institutes/grid.5433.1 schema:alternateName Daimler (Germany)
    326 schema:name Department of Environment Perception, Daimler AG, Wilhelm-Runge-Str. 11, 89081, Ulm, Germany
    327 rdf:type schema:Organization
    328 https://www.grid.ac/institutes/grid.7177.6 schema:alternateName University of Amsterdam
    329 schema:name AMLab, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
    330 Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
    331 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...