Selective Search for Object Recognition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-09

AUTHORS

J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders

ABSTRACT

This paper addresses the problem of generating possible object locations for use in object recognition. We introduce selective search which combines the strength of both an exhaustive search and segmentation. Like segmentation, we use the image structure to guide our sampling process. Like exhaustive search, we aim to capture all possible object locations. Instead of a single technique to generate possible object locations, we diversify our search and use a variety of complementary image partitionings to deal with as many image conditions as possible. Our selective search results in a small set of data-driven, class-independent, high quality locations, yielding 99 % recall and a Mean Average Best Overlap of 0.879 at 10,097 locations. The reduced number of locations compared to an exhaustive search enables the use of stronger machine learning techniques and stronger appearance models for object recognition. In this paper we show that our selective search enables the use of the powerful Bag-of-Words model for recognition. The selective search software is made publicly available (Software: http://disi.unitn.it/~uijlings/SelectiveSearch.html). More... »

PAGES

154-171

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11263-013-0620-5

DOI

http://dx.doi.org/10.1007/s11263-013-0620-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033900312


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "University of Trento, Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uijlings", 
        "givenName": "J. R. R.", 
        "id": "sg:person.014124263253.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124263253.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "University of Amsterdam, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van de Sande", 
        "givenName": "K. E. A.", 
        "id": "sg:person.010442752533.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442752533.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "University of Amsterdam, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gevers", 
        "givenName": "T.", 
        "id": "sg:person.012615331106.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615331106.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "University of Amsterdam, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smeulders", 
        "givenName": "A. W. M.", 
        "id": "sg:person.013572151715.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013572151715.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11263-005-6642-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001468231", 
          "https://doi.org/10.1007/s11263-005-6642-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000013087.49260.fb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001944608", 
          "https://doi.org/10.1023/b:visi.0000013087.49260.fb"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000022288.19776.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009092998", 
          "https://doi.org/10.1023/b:visi.0000022288.19776.77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15555-0_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011653915", 
          "https://doi.org/10.1007/978-3-642-15555-0_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15555-0_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011653915", 
          "https://doi.org/10.1007/978-3-642-15555-0_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-009-0275-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014796149", 
          "https://doi.org/10.1007/s11263-009-0275-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-009-0275-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014796149", 
          "https://doi.org/10.1007/s11263-009-0275-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052687286", 
          "https://doi.org/10.1023/b:visi.0000029664.99615.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.1000236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.868688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.977559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2010.2052027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061697742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2010.2091400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061697776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2009.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2009.154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2009.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2010.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2012.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2001.990517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093187020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093519327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093817141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093997066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094033212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094461024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094512911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094653828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094965859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095015498"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "This paper addresses the problem of generating possible object locations for use in object recognition. We introduce selective search which combines the strength of both an exhaustive search and segmentation. Like segmentation, we use the image structure to guide our sampling process. Like exhaustive search, we aim to capture all possible object locations. Instead of a single technique to generate possible object locations, we diversify our search and use a variety of complementary image partitionings to deal with as many image conditions as possible. Our selective search results in a small set of data-driven, class-independent, high quality locations, yielding 99 % recall and a Mean Average Best Overlap of 0.879 at 10,097 locations. The reduced number of locations compared to an exhaustive search enables the use of stronger machine learning techniques and stronger appearance models for object recognition. In this paper we show that our selective search enables the use of the powerful Bag-of-Words model for recognition. The selective search software is made publicly available (Software: http://disi.unitn.it/~uijlings/SelectiveSearch.html).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11263-013-0620-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032807", 
        "issn": [
          "0920-5691", 
          "1573-1405"
        ], 
        "name": "International Journal of Computer Vision", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "104"
      }
    ], 
    "name": "Selective Search for Object Recognition", 
    "pagination": "154-171", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a17e0999b68055e6aa7fe3e9c298908cf3c1d24d033ad779774759b225bb23b3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11263-013-0620-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033900312"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11263-013-0620-5", 
      "https://app.dimensions.ai/details/publication/pub.1033900312"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11263-013-0620-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11263-013-0620-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11263-013-0620-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11263-013-0620-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11263-013-0620-5'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11263-013-0620-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc8c26c9401b346f6a2d26b9de059ed19
4 schema:citation sg:pub.10.1007/978-3-642-15555-0_42
5 sg:pub.10.1007/s11263-005-6642-x
6 sg:pub.10.1007/s11263-009-0275-4
7 sg:pub.10.1023/b:visi.0000013087.49260.fb
8 sg:pub.10.1023/b:visi.0000022288.19776.77
9 sg:pub.10.1023/b:visi.0000029664.99615.94
10 https://doi.org/10.1109/34.1000236
11 https://doi.org/10.1109/34.868688
12 https://doi.org/10.1109/34.977559
13 https://doi.org/10.1109/cvpr.2001.990517
14 https://doi.org/10.1109/cvpr.2005.177
15 https://doi.org/10.1109/cvpr.2006.68
16 https://doi.org/10.1109/cvpr.2007.383050
17 https://doi.org/10.1109/cvpr.2009.5206693
18 https://doi.org/10.1109/cvpr.2010.5540063
19 https://doi.org/10.1109/cvpr.2010.5540207
20 https://doi.org/10.1109/cvpr.2010.5540226
21 https://doi.org/10.1109/iccv.2009.5459183
22 https://doi.org/10.1109/iccv.2009.5459257
23 https://doi.org/10.1109/tmm.2010.2052027
24 https://doi.org/10.1109/tmm.2010.2091400
25 https://doi.org/10.1109/tpami.2002.1017623
26 https://doi.org/10.1109/tpami.2009.144
27 https://doi.org/10.1109/tpami.2009.154
28 https://doi.org/10.1109/tpami.2009.167
29 https://doi.org/10.1109/tpami.2010.161
30 https://doi.org/10.1109/tpami.2012.28
31 schema:datePublished 2013-09
32 schema:datePublishedReg 2013-09-01
33 schema:description This paper addresses the problem of generating possible object locations for use in object recognition. We introduce selective search which combines the strength of both an exhaustive search and segmentation. Like segmentation, we use the image structure to guide our sampling process. Like exhaustive search, we aim to capture all possible object locations. Instead of a single technique to generate possible object locations, we diversify our search and use a variety of complementary image partitionings to deal with as many image conditions as possible. Our selective search results in a small set of data-driven, class-independent, high quality locations, yielding 99 % recall and a Mean Average Best Overlap of 0.879 at 10,097 locations. The reduced number of locations compared to an exhaustive search enables the use of stronger machine learning techniques and stronger appearance models for object recognition. In this paper we show that our selective search enables the use of the powerful Bag-of-Words model for recognition. The selective search software is made publicly available (Software: http://disi.unitn.it/~uijlings/SelectiveSearch.html).
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N6643d25335024ce9ac1100829f3e2d40
38 Nc21003ae54e74b8ca63a2bbc7f0e5f8c
39 sg:journal.1032807
40 schema:name Selective Search for Object Recognition
41 schema:pagination 154-171
42 schema:productId Nb6a3d5c1caee40b689509376fb9eb8fd
43 Ne33f76c64f434666a2dd83b1e4899762
44 Nf20f91b180174af988c4c6cb738ff7dd
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033900312
46 https://doi.org/10.1007/s11263-013-0620-5
47 schema:sdDatePublished 2019-04-10T21:39
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nac2b9bc7e55a47468f65b719c0d60e1b
50 schema:url http://link.springer.com/10.1007%2Fs11263-013-0620-5
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1e8e5f49a61b49d993480ef3d0ca071d rdf:first sg:person.010442752533.11
55 rdf:rest N22b92e8701c3421aa5fc081a6c4e1acf
56 N22b92e8701c3421aa5fc081a6c4e1acf rdf:first sg:person.012615331106.24
57 rdf:rest N6f315fab899d498391d9aa18b35992a7
58 N6643d25335024ce9ac1100829f3e2d40 schema:volumeNumber 104
59 rdf:type schema:PublicationVolume
60 N6f315fab899d498391d9aa18b35992a7 rdf:first sg:person.013572151715.45
61 rdf:rest rdf:nil
62 Nac2b9bc7e55a47468f65b719c0d60e1b schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nb6a3d5c1caee40b689509376fb9eb8fd schema:name dimensions_id
65 schema:value pub.1033900312
66 rdf:type schema:PropertyValue
67 Nc21003ae54e74b8ca63a2bbc7f0e5f8c schema:issueNumber 2
68 rdf:type schema:PublicationIssue
69 Nc8c26c9401b346f6a2d26b9de059ed19 rdf:first sg:person.014124263253.27
70 rdf:rest N1e8e5f49a61b49d993480ef3d0ca071d
71 Ne33f76c64f434666a2dd83b1e4899762 schema:name doi
72 schema:value 10.1007/s11263-013-0620-5
73 rdf:type schema:PropertyValue
74 Nf20f91b180174af988c4c6cb738ff7dd schema:name readcube_id
75 schema:value a17e0999b68055e6aa7fe3e9c298908cf3c1d24d033ad779774759b225bb23b3
76 rdf:type schema:PropertyValue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:journal.1032807 schema:issn 0920-5691
84 1573-1405
85 schema:name International Journal of Computer Vision
86 rdf:type schema:Periodical
87 sg:person.010442752533.11 schema:affiliation https://www.grid.ac/institutes/grid.7177.6
88 schema:familyName van de Sande
89 schema:givenName K. E. A.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442752533.11
91 rdf:type schema:Person
92 sg:person.012615331106.24 schema:affiliation https://www.grid.ac/institutes/grid.7177.6
93 schema:familyName Gevers
94 schema:givenName T.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615331106.24
96 rdf:type schema:Person
97 sg:person.013572151715.45 schema:affiliation https://www.grid.ac/institutes/grid.7177.6
98 schema:familyName Smeulders
99 schema:givenName A. W. M.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013572151715.45
101 rdf:type schema:Person
102 sg:person.014124263253.27 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
103 schema:familyName Uijlings
104 schema:givenName J. R. R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124263253.27
106 rdf:type schema:Person
107 sg:pub.10.1007/978-3-642-15555-0_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011653915
108 https://doi.org/10.1007/978-3-642-15555-0_42
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11263-005-6642-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001468231
111 https://doi.org/10.1007/s11263-005-6642-x
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11263-009-0275-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014796149
114 https://doi.org/10.1007/s11263-009-0275-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/b:visi.0000013087.49260.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1001944608
117 https://doi.org/10.1023/b:visi.0000013087.49260.fb
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/b:visi.0000022288.19776.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009092998
120 https://doi.org/10.1023/b:visi.0000022288.19776.77
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
123 https://doi.org/10.1023/b:visi.0000029664.99615.94
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/34.1000236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155588
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/34.868688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157130
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/34.977559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157343
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/cvpr.2001.990517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093187020
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/cvpr.2005.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093997066
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/cvpr.2006.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094512911
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/cvpr.2007.383050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093817141
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/cvpr.2009.5206693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094033212
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/cvpr.2010.5540063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094461024
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/cvpr.2010.5540207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093519327
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/cvpr.2010.5540226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094653828
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/iccv.2009.5459183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095015498
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iccv.2009.5459257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094965859
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tmm.2010.2052027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061697742
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tmm.2010.2091400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061697776
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tpami.2009.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743725
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tpami.2009.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743736
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tpami.2009.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743745
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tpami.2010.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743879
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tpami.2012.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744374
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.11696.39 schema:alternateName University of Trento
168 schema:name University of Trento, Trento, Italy
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.7177.6 schema:alternateName University of Amsterdam
171 schema:name University of Amsterdam, Amsterdam, The Netherlands
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...