Attention Based Detection and Recognition of Hand Postures Against Complex Backgrounds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-02

AUTHORS

Pramod Kumar Pisharady, Prahlad Vadakkepat, Ai Poh Loh

ABSTRACT

A system for the detection, segmentation and recognition of multi-class hand postures against complex natural backgrounds is presented. Visual attention, which is the cognitive process of selectively concentrating on a region of interest in the visual field, helps human to recognize objects in cluttered natural scenes. The proposed system utilizes a Bayesian model of visual attention to generate a saliency map, and to detect and identify the hand region. Feature based visual attention is implemented using a combination of high level (shape, texture) and low level (color) image features. The shape and texture features are extracted from a skin similarity map, using a computational model of the ventral stream of visual cortex. The skin similarity map, which represents the similarity of each pixel to the human skin color in HSI color space, enhanced the edges and shapes within the skin colored regions. The color features used are the discretized chrominance components in HSI, YCbCr color spaces, and the similarity to skin map. The hand postures are classified using the shape and texture features, with a support vector machines classifier. A new 10 class complex background hand posture dataset namely NUS hand posture dataset-II is developed for testing the proposed algorithm (40 subjects, different ethnicities, various hand sizes, 2750 hand postures and 2000 background images). The algorithm is tested for hand detection and hand posture recognition using 10 fold cross-validation. The experimental results show that the algorithm has a person independent performance, and is reliable against variations in hand sizes and complex backgrounds. The algorithm provided a recognition rate of 94.36 %. A comparison of the proposed algorithm with other existing methods evidences its better performance. More... »

PAGES

403-419

References to SciGraph publications

  • 2001-03. Computational modelling of visual attention in NATURE REVIEWS NEUROSCIENCE
  • 2001-12-20. Vision-Based Gesture Recognition: A Review in GESTURE-BASED COMMUNICATION IN HUMAN-COMPUTER INTERACTION
  • 2004-10. Generalization in vision and motor control in NATURE
  • 2008. Face Recognition Using Cortex Mechanism and SVM in INTELLIGENT ROBOTICS AND APPLICATIONS
  • 1999-11. Hierarchical models of object recognition in cortex in NATURE NEUROSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11263-012-0560-5

    DOI

    http://dx.doi.org/10.1007/s11263-012-0560-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026399128


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pisharady", 
            "givenName": "Pramod Kumar", 
            "id": "sg:person.014175550246.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014175550246.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vadakkepat", 
            "givenName": "Prahlad", 
            "id": "sg:person.07746716317.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746716317.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loh", 
            "givenName": "Ai Poh", 
            "id": "sg:person.014362652543.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014362652543.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.patrec.2010.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000118156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(03)00070-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001166905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0262-8856(03)00070-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001166905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2006.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001474818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2011.01.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001870585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(00)00096-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004639135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006012409", 
              "https://doi.org/10.1038/nature03014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006012409", 
              "https://doi.org/10.1038/nature03014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvlc.2005.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006494732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvlc.2005.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006494732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imavis.2005.07.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016390706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(95)00025-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016501677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cviu.2006.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016675432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cviu.2008.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017133342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imavis.2008.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019339841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.robot.2007.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020550782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88513-9_67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020595324", 
              "https://doi.org/10.1007/978-3-540-88513-9_67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88513-9_67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020595324", 
              "https://doi.org/10.1007/978-3-540-88513-9_67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46616-9_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021177730", 
              "https://doi.org/10.1007/3-540-46616-9_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46616-9_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021177730", 
              "https://doi.org/10.1007/3-540-46616-9_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(03)00042-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030876133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(03)00042-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030876133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/14819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035393709", 
              "https://doi.org/10.1038/14819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/14819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035393709", 
              "https://doi.org/10.1038/14819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.visres.2010.05.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036126293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35058500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036345336", 
              "https://doi.org/10.1038/35058500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35058500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036345336", 
              "https://doi.org/10.1038/35058500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(02)00072-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037791523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1113/jphysiol.1962.sp006837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037811822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dsp.2009.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040902331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.wnr.0000183900.92901.fc", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047814611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.wnr.0000183900.92901.fc", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047814611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.wnr.0000183900.92901.fc", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047814611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1995.7.5.889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051391301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.598226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.730553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.730558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.799904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.977568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/38.403831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061163807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5326.868448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061186725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2003.814758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061622017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tim.2008.922070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061637653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2002.1023803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2008.144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2008.203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2006.889491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061784721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcc.2007.893280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061797955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219843610002180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063007173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/4/1/020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064230800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.1987.58.6.1233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079745662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.2004.1301601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093238132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.1999.786951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093425834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.1998.698710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093464753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.1996.557260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093592974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.2004.1301646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093877203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2000.854749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094596241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.1998.671005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094855664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icarcv.2010.5707352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094977455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095271325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095271325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icmlc.2008.4620966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095313747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2003.1211500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095619855"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-02", 
        "datePublishedReg": "2013-02-01", 
        "description": "A system for the detection, segmentation and recognition of multi-class hand postures against complex natural backgrounds is presented. Visual attention, which is the cognitive process of selectively concentrating on a region of interest in the visual field, helps human to recognize objects in cluttered natural scenes. The proposed system utilizes a Bayesian model of visual attention to generate a saliency map, and to detect and identify the hand region. Feature based visual attention is implemented using a combination of high level (shape, texture) and low level (color) image features. The shape and texture features are extracted from a skin similarity map, using a computational model of the ventral stream of visual cortex. The skin similarity map, which represents the similarity of each pixel to the human skin color in HSI color space, enhanced the edges and shapes within the skin colored regions. The color features used are the discretized chrominance components in HSI, YCbCr color spaces, and the similarity to skin map. The hand postures are classified using the shape and texture features, with a support vector machines classifier. A new 10 class complex background hand posture dataset namely NUS hand posture dataset-II is developed for testing the proposed algorithm (40 subjects, different ethnicities, various hand sizes, 2750 hand postures and 2000 background images). The algorithm is tested for hand detection and hand posture recognition using 10 fold cross-validation. The experimental results show that the algorithm has a person independent performance, and is reliable against variations in hand sizes and complex backgrounds. The algorithm provided a recognition rate of 94.36 %. A comparison of the proposed algorithm with other existing methods evidences its better performance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11263-012-0560-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1032807", 
            "issn": [
              "0920-5691", 
              "1573-1405"
            ], 
            "name": "International Journal of Computer Vision", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "101"
          }
        ], 
        "name": "Attention Based Detection and Recognition of Hand Postures Against Complex Backgrounds", 
        "pagination": "403-419", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7dc38ecc6f6cbcfd27b4585b387a1ffc86945f01c06c5a1cd07189945b053a44"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11263-012-0560-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026399128"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11263-012-0560-5", 
          "https://app.dimensions.ai/details/publication/pub.1026399128"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000522.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11263-012-0560-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11263-012-0560-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11263-012-0560-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11263-012-0560-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11263-012-0560-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    248 TRIPLES      21 PREDICATES      83 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11263-012-0560-5 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N9b915ef1ccbc4bc48d620808759eb858
    4 schema:citation sg:pub.10.1007/3-540-46616-9_10
    5 sg:pub.10.1007/978-3-540-88513-9_67
    6 sg:pub.10.1038/14819
    7 sg:pub.10.1038/35058500
    8 sg:pub.10.1038/nature03014
    9 https://doi.org/10.1016/0004-3702(95)00025-9
    10 https://doi.org/10.1016/j.asoc.2011.01.013
    11 https://doi.org/10.1016/j.cviu.2006.10.012
    12 https://doi.org/10.1016/j.cviu.2008.12.001
    13 https://doi.org/10.1016/j.dsp.2009.10.008
    14 https://doi.org/10.1016/j.imavis.2005.07.016
    15 https://doi.org/10.1016/j.imavis.2008.03.004
    16 https://doi.org/10.1016/j.jvlc.2005.04.003
    17 https://doi.org/10.1016/j.patrec.2006.04.002
    18 https://doi.org/10.1016/j.patrec.2010.02.004
    19 https://doi.org/10.1016/j.robot.2007.03.002
    20 https://doi.org/10.1016/j.visres.2010.05.013
    21 https://doi.org/10.1016/s0031-3203(00)00096-0
    22 https://doi.org/10.1016/s0031-3203(02)00072-9
    23 https://doi.org/10.1016/s0031-3203(03)00042-6
    24 https://doi.org/10.1016/s0262-8856(03)00070-2
    25 https://doi.org/10.1097/01.wnr.0000183900.92901.fc
    26 https://doi.org/10.1109/34.598226
    27 https://doi.org/10.1109/34.730553
    28 https://doi.org/10.1109/34.730558
    29 https://doi.org/10.1109/34.799904
    30 https://doi.org/10.1109/34.977568
    31 https://doi.org/10.1109/38.403831
    32 https://doi.org/10.1109/5326.868448
    33 https://doi.org/10.1109/afgr.1996.557260
    34 https://doi.org/10.1109/afgr.1998.671005
    35 https://doi.org/10.1109/afgr.2004.1301601
    36 https://doi.org/10.1109/afgr.2004.1301646
    37 https://doi.org/10.1109/cvpr.1998.698710
    38 https://doi.org/10.1109/cvpr.1999.786951
    39 https://doi.org/10.1109/cvpr.2000.854749
    40 https://doi.org/10.1109/cvpr.2003.1211500
    41 https://doi.org/10.1109/cvpr.2005.254
    42 https://doi.org/10.1109/icarcv.2010.5707352
    43 https://doi.org/10.1109/icmlc.2008.4620966
    44 https://doi.org/10.1109/tie.2003.814758
    45 https://doi.org/10.1109/tim.2008.922070
    46 https://doi.org/10.1109/tpami.2002.1023803
    47 https://doi.org/10.1109/tpami.2005.112
    48 https://doi.org/10.1109/tpami.2005.17
    49 https://doi.org/10.1109/tpami.2007.40
    50 https://doi.org/10.1109/tpami.2007.56
    51 https://doi.org/10.1109/tpami.2008.144
    52 https://doi.org/10.1109/tpami.2008.203
    53 https://doi.org/10.1109/tro.2006.889491
    54 https://doi.org/10.1109/tsmcc.2007.893280
    55 https://doi.org/10.1113/jphysiol.1962.sp006837
    56 https://doi.org/10.1142/s0219843610002180
    57 https://doi.org/10.1152/jn.1987.58.6.1233
    58 https://doi.org/10.1162/neco.1995.7.5.889
    59 https://doi.org/10.1209/0295-5075/4/1/020
    60 schema:datePublished 2013-02
    61 schema:datePublishedReg 2013-02-01
    62 schema:description A system for the detection, segmentation and recognition of multi-class hand postures against complex natural backgrounds is presented. Visual attention, which is the cognitive process of selectively concentrating on a region of interest in the visual field, helps human to recognize objects in cluttered natural scenes. The proposed system utilizes a Bayesian model of visual attention to generate a saliency map, and to detect and identify the hand region. Feature based visual attention is implemented using a combination of high level (shape, texture) and low level (color) image features. The shape and texture features are extracted from a skin similarity map, using a computational model of the ventral stream of visual cortex. The skin similarity map, which represents the similarity of each pixel to the human skin color in HSI color space, enhanced the edges and shapes within the skin colored regions. The color features used are the discretized chrominance components in HSI, YCbCr color spaces, and the similarity to skin map. The hand postures are classified using the shape and texture features, with a support vector machines classifier. A new 10 class complex background hand posture dataset namely NUS hand posture dataset-II is developed for testing the proposed algorithm (40 subjects, different ethnicities, various hand sizes, 2750 hand postures and 2000 background images). The algorithm is tested for hand detection and hand posture recognition using 10 fold cross-validation. The experimental results show that the algorithm has a person independent performance, and is reliable against variations in hand sizes and complex backgrounds. The algorithm provided a recognition rate of 94.36 %. A comparison of the proposed algorithm with other existing methods evidences its better performance.
    63 schema:genre research_article
    64 schema:inLanguage en
    65 schema:isAccessibleForFree false
    66 schema:isPartOf Nc60d2130bece400c85296e5810c7d486
    67 Nd450c5b143304a97ada8bc8f3bd508e0
    68 sg:journal.1032807
    69 schema:name Attention Based Detection and Recognition of Hand Postures Against Complex Backgrounds
    70 schema:pagination 403-419
    71 schema:productId N090f85bd85c44091a22bd1d955f01d45
    72 N40728c9c1b5c458e8cfa0690fd3cea1f
    73 Nb83197a631fa431bbdf26af705795ea3
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026399128
    75 https://doi.org/10.1007/s11263-012-0560-5
    76 schema:sdDatePublished 2019-04-10T15:54
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N5e9752cf3c37421787c84cfa68cd8765
    79 schema:url http://link.springer.com/10.1007%2Fs11263-012-0560-5
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N090f85bd85c44091a22bd1d955f01d45 schema:name doi
    84 schema:value 10.1007/s11263-012-0560-5
    85 rdf:type schema:PropertyValue
    86 N3b97bc9898144d699ade3c64426176c8 rdf:first sg:person.07746716317.47
    87 rdf:rest N693f1692aaef40428e81cdc7419bb53f
    88 N40728c9c1b5c458e8cfa0690fd3cea1f schema:name readcube_id
    89 schema:value 7dc38ecc6f6cbcfd27b4585b387a1ffc86945f01c06c5a1cd07189945b053a44
    90 rdf:type schema:PropertyValue
    91 N5e9752cf3c37421787c84cfa68cd8765 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N693f1692aaef40428e81cdc7419bb53f rdf:first sg:person.014362652543.00
    94 rdf:rest rdf:nil
    95 N9b915ef1ccbc4bc48d620808759eb858 rdf:first sg:person.014175550246.96
    96 rdf:rest N3b97bc9898144d699ade3c64426176c8
    97 Nb83197a631fa431bbdf26af705795ea3 schema:name dimensions_id
    98 schema:value pub.1026399128
    99 rdf:type schema:PropertyValue
    100 Nc60d2130bece400c85296e5810c7d486 schema:volumeNumber 101
    101 rdf:type schema:PublicationVolume
    102 Nd450c5b143304a97ada8bc8f3bd508e0 schema:issueNumber 3
    103 rdf:type schema:PublicationIssue
    104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Information and Computing Sciences
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Artificial Intelligence and Image Processing
    109 rdf:type schema:DefinedTerm
    110 sg:journal.1032807 schema:issn 0920-5691
    111 1573-1405
    112 schema:name International Journal of Computer Vision
    113 rdf:type schema:Periodical
    114 sg:person.014175550246.96 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
    115 schema:familyName Pisharady
    116 schema:givenName Pramod Kumar
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014175550246.96
    118 rdf:type schema:Person
    119 sg:person.014362652543.00 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
    120 schema:familyName Loh
    121 schema:givenName Ai Poh
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014362652543.00
    123 rdf:type schema:Person
    124 sg:person.07746716317.47 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
    125 schema:familyName Vadakkepat
    126 schema:givenName Prahlad
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746716317.47
    128 rdf:type schema:Person
    129 sg:pub.10.1007/3-540-46616-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021177730
    130 https://doi.org/10.1007/3-540-46616-9_10
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/978-3-540-88513-9_67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020595324
    133 https://doi.org/10.1007/978-3-540-88513-9_67
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1038/14819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035393709
    136 https://doi.org/10.1038/14819
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1038/35058500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036345336
    139 https://doi.org/10.1038/35058500
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1038/nature03014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006012409
    142 https://doi.org/10.1038/nature03014
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/0004-3702(95)00025-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016501677
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.asoc.2011.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001870585
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.cviu.2006.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016675432
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.cviu.2008.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017133342
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.dsp.2009.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040902331
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.imavis.2005.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016390706
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.imavis.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019339841
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.jvlc.2005.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006494732
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.patrec.2006.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001474818
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.patrec.2010.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000118156
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.robot.2007.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020550782
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.visres.2010.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036126293
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/s0031-3203(00)00096-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004639135
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s0031-3203(02)00072-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037791523
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s0031-3203(03)00042-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030876133
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/s0262-8856(03)00070-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001166905
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1097/01.wnr.0000183900.92901.fc schema:sameAs https://app.dimensions.ai/details/publication/pub.1047814611
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/34.598226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156615
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/34.730553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156876
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/34.730558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156881
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/34.799904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157003
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/34.977568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157352
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1109/38.403831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061163807
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1109/5326.868448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061186725
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1109/afgr.1996.557260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093592974
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1109/afgr.1998.671005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094855664
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1109/afgr.2004.1301601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093238132
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1109/afgr.2004.1301646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093877203
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1109/cvpr.1998.698710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093464753
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1109/cvpr.1999.786951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093425834
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1109/cvpr.2000.854749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094596241
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1109/cvpr.2003.1211500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095619855
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1109/cvpr.2005.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095271325
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1109/icarcv.2010.5707352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094977455
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1109/icmlc.2008.4620966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095313747
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1109/tie.2003.814758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061622017
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1109/tim.2008.922070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061637653
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1109/tpami.2002.1023803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742405
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1109/tpami.2005.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742784
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/tpami.2005.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742831
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1109/tpami.2007.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743336
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1109/tpami.2007.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743347
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1109/tpami.2008.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743503
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1109/tpami.2008.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743552
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1109/tro.2006.889491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784721
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1109/tsmcc.2007.893280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797955
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1113/jphysiol.1962.sp006837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037811822
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1142/s0219843610002180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063007173
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1152/jn.1987.58.6.1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079745662
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1162/neco.1995.7.5.889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051391301
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1209/0295-5075/4/1/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230800
    245 rdf:type schema:CreativeWork
    246 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
    247 schema:name Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore, Singapore
    248 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...