Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-06

AUTHORS

J. Zhang, M. Marszałek, S. Lazebnik, C. Schmid

ABSTRACT

Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations and learns a Support Vector Machine classifier with kernels based on two effective measures for comparing distributions, the Earth Mover’s Distance and the χ2 distance. We first evaluate the performance of our approach with different keypoint detectors and descriptors, as well as different kernels and classifiers. We then conduct a comparative evaluation with several state-of-the-art recognition methods on four texture and five object databases. On most of these databases, our implementation exceeds the best reported results and achieves comparable performance on the rest. Finally, we investigate the influence of background correlations on recognition performance via extensive tests on the PASCAL database, for which ground-truth object localization information is available. Our experiments demonstrate that image representations based on distributions of local features are surprisingly effective for classification of texture and object images under challenging real-world conditions, including significant intra-class variations and substantial background clutter. More... »

PAGES

213-238

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11263-006-9794-4

DOI

http://dx.doi.org/10.1007/s11263-006-9794-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008205152


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRIA, GRAVIR-CNRS, 655, av. de l\u2019Europe, 38330, Montbonnot, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "J.", 
        "id": "sg:person.01243311462.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243311462.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRIA, GRAVIR-CNRS, 655, av. de l\u2019Europe, 38330, Montbonnot, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marsza\u0142ek", 
        "givenName": "M.", 
        "id": "sg:person.011725725543.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011725725543.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Beckman Institute, University of Illinois, 405 N. Mathews Ave., 61801, Urbana, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lazebnik", 
        "givenName": "S.", 
        "id": "sg:person.01270671277.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270671277.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRIA, GRAVIR-CNRS, 655, av. de l\u2019Europe, 38330, Montbonnot, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmid", 
        "givenName": "C.", 
        "id": "sg:person.014001416002.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014001416002.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1026543900054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006187360", 
          "https://doi.org/10.1023/a:1026543900054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008120406972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007590088", 
          "https://doi.org/10.1023/a:1008120406972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.143648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015213336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47979-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015337224", 
          "https://doi.org/10.1007/3-540-47979-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47977-5_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016201178", 
          "https://doi.org/10.1007/3-540-47977-5_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.848998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018563512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11550518_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021525040", 
          "https://doi.org/10.1007/11550518_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11550518_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021525040", 
          "https://doi.org/10.1007/11550518_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000042934.15159.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022591804", 
          "https://doi.org/10.1023/b:visi.0000042934.15159.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000027790.02288.f2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024638466", 
          "https://doi.org/10.1023/b:visi.0000027790.02288.f2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025865092", 
          "https://doi.org/10.1007/bf00058750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(92)90099-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027002452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(92)90099-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027002452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/290091a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040887630", 
          "https://doi.org/10.1038/290091a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008045108935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041767492", 
          "https://doi.org/10.1023/a:1008045108935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/300776.300778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043167095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24673-2_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045827469", 
          "https://doi.org/10.1007/978-3-540-24673-2_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24673-2_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045827469", 
          "https://doi.org/10.1007/978-3-540-24673-2_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011126920638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046312359", 
          "https://doi.org/10.1023/a:1011126920638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24671-8_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046580260", 
          "https://doi.org/10.1007/978-3-540-24671-8_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24671-8_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046580260", 
          "https://doi.org/10.1007/978-3-540-24671-8_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47969-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046596731", 
          "https://doi.org/10.1007/3-540-47969-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052687286", 
          "https://doi.org/10.1023/b:visi.0000029664.99615.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.531803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.67648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.683777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.765655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.788646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1973.223602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061455715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2004.1262185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093271322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2003.1211497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093305113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093344916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2003.1211479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093624919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094013418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094132829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094251884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094301320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2004.1334079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094584594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094611604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094706338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094706338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2003.1238663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094978467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2003.1247092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095114883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2003.1238351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095214097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095244523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095244523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095611654"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-06", 
    "datePublishedReg": "2007-06-01", 
    "description": "Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations and learns a Support Vector Machine classifier with kernels based on two effective measures for comparing distributions, the Earth Mover\u2019s Distance and the \u03c72 distance. We first evaluate the performance of our approach with different keypoint detectors and descriptors, as well as different kernels and classifiers. We then conduct a comparative evaluation with several state-of-the-art recognition methods on four texture and five object databases. On most of these databases, our implementation exceeds the best reported results and achieves comparable performance on the rest. Finally, we investigate the influence of background correlations on recognition performance via extensive tests on the PASCAL database, for which ground-truth object localization information is available. Our experiments demonstrate that image representations based on distributions of local features are surprisingly effective for classification of texture and object images under challenging real-world conditions, including significant intra-class variations and substantial background clutter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11263-006-9794-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032807", 
        "issn": [
          "0920-5691", 
          "1573-1405"
        ], 
        "name": "International Journal of Computer Vision", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "name": "Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study", 
    "pagination": "213-238", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2717408ec39caee10bc07b9ec1c898da906c9cc62bcb0627b2af57cd84d54ba2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11263-006-9794-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008205152"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11263-006-9794-4", 
      "https://app.dimensions.ai/details/publication/pub.1008205152"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11263-006-9794-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11263-006-9794-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11263-006-9794-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11263-006-9794-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11263-006-9794-4'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11263-006-9794-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5b9fa141a6a54b8fa99d69ce565a4413
4 schema:citation sg:pub.10.1007/11550518_41
5 sg:pub.10.1007/3-540-47969-4_9
6 sg:pub.10.1007/3-540-47977-5_17
7 sg:pub.10.1007/3-540-47979-1_8
8 sg:pub.10.1007/978-3-540-24671-8_6
9 sg:pub.10.1007/978-3-540-24673-2_21
10 sg:pub.10.1007/bf00058750
11 sg:pub.10.1023/a:1008045108935
12 sg:pub.10.1023/a:1008120406972
13 sg:pub.10.1023/a:1011126920638
14 sg:pub.10.1023/a:1026543900054
15 sg:pub.10.1023/b:visi.0000027790.02288.f2
16 sg:pub.10.1023/b:visi.0000029664.99615.94
17 sg:pub.10.1023/b:visi.0000042934.15159.49
18 sg:pub.10.1038/290091a0
19 https://doi.org/10.1016/0031-3203(92)90099-5
20 https://doi.org/10.1109/34.531803
21 https://doi.org/10.1109/34.67648
22 https://doi.org/10.1109/34.683777
23 https://doi.org/10.1109/34.765655
24 https://doi.org/10.1109/72.788646
25 https://doi.org/10.1109/cvpr.2003.1211479
26 https://doi.org/10.1109/cvpr.2003.1211497
27 https://doi.org/10.1109/cvpr.2004.383
28 https://doi.org/10.1109/cvpr.2005.134
29 https://doi.org/10.1109/cvpr.2005.138
30 https://doi.org/10.1109/cvpr.2005.16
31 https://doi.org/10.1109/cvpr.2005.223
32 https://doi.org/10.1109/cvpr.2005.320
33 https://doi.org/10.1109/iccv.2003.1238351
34 https://doi.org/10.1109/iccv.2003.1238663
35 https://doi.org/10.1109/iccv.2005.152
36 https://doi.org/10.1109/iccv.2005.239
37 https://doi.org/10.1109/iccv.2005.66
38 https://doi.org/10.1109/iccv.2005.77
39 https://doi.org/10.1109/icip.2003.1247092
40 https://doi.org/10.1109/icpr.2004.1334079
41 https://doi.org/10.1109/t-c.1973.223602
42 https://doi.org/10.1109/tnn.2005.848998
43 https://doi.org/10.1109/tpami.2004.1262185
44 https://doi.org/10.1109/tpami.2005.151
45 https://doi.org/10.1109/tpami.2005.188
46 https://doi.org/10.1117/12.143648
47 https://doi.org/10.1145/300776.300778
48 schema:datePublished 2007-06
49 schema:datePublishedReg 2007-06-01
50 schema:description Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations and learns a Support Vector Machine classifier with kernels based on two effective measures for comparing distributions, the Earth Mover’s Distance and the χ2 distance. We first evaluate the performance of our approach with different keypoint detectors and descriptors, as well as different kernels and classifiers. We then conduct a comparative evaluation with several state-of-the-art recognition methods on four texture and five object databases. On most of these databases, our implementation exceeds the best reported results and achieves comparable performance on the rest. Finally, we investigate the influence of background correlations on recognition performance via extensive tests on the PASCAL database, for which ground-truth object localization information is available. Our experiments demonstrate that image representations based on distributions of local features are surprisingly effective for classification of texture and object images under challenging real-world conditions, including significant intra-class variations and substantial background clutter.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf Nad9313705f5c4f69a62c7f608e419af0
55 Nbf9e87bab2d840ffa517340e826358b4
56 sg:journal.1032807
57 schema:name Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study
58 schema:pagination 213-238
59 schema:productId N0007ee6ffa6042659010e6ec53954cf9
60 N8a461e02b29e4cacaf6b68f51ed2a837
61 Ncc27f8a10f1549ada08d822c8e0eada7
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008205152
63 https://doi.org/10.1007/s11263-006-9794-4
64 schema:sdDatePublished 2019-04-10T13:19
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N7509044e072f44ce8332e149ecd7c2a2
67 schema:url http://link.springer.com/10.1007%2Fs11263-006-9794-4
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0007ee6ffa6042659010e6ec53954cf9 schema:name dimensions_id
72 schema:value pub.1008205152
73 rdf:type schema:PropertyValue
74 N09d3207600114c2f870834d35d74df6d rdf:first sg:person.01270671277.61
75 rdf:rest Nb06e37cd4ef94a08ac577e82c005663d
76 N0d6f456e223742c6a1b2a932c9e72d7e schema:name INRIA, GRAVIR-CNRS, 655, av. de l’Europe, 38330, Montbonnot, France
77 rdf:type schema:Organization
78 N4b42498fb5ad425783670764ba7dd7ff rdf:first sg:person.011725725543.08
79 rdf:rest N09d3207600114c2f870834d35d74df6d
80 N5b9fa141a6a54b8fa99d69ce565a4413 rdf:first sg:person.01243311462.17
81 rdf:rest N4b42498fb5ad425783670764ba7dd7ff
82 N7509044e072f44ce8332e149ecd7c2a2 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N8a461e02b29e4cacaf6b68f51ed2a837 schema:name doi
85 schema:value 10.1007/s11263-006-9794-4
86 rdf:type schema:PropertyValue
87 Nad9313705f5c4f69a62c7f608e419af0 schema:issueNumber 2
88 rdf:type schema:PublicationIssue
89 Nb06e37cd4ef94a08ac577e82c005663d rdf:first sg:person.014001416002.35
90 rdf:rest rdf:nil
91 Nbf9e87bab2d840ffa517340e826358b4 schema:volumeNumber 73
92 rdf:type schema:PublicationVolume
93 Ncc27f8a10f1549ada08d822c8e0eada7 schema:name readcube_id
94 schema:value 2717408ec39caee10bc07b9ec1c898da906c9cc62bcb0627b2af57cd84d54ba2
95 rdf:type schema:PropertyValue
96 Ne0815d63b3364d098c6aa3668c9e66e3 schema:name INRIA, GRAVIR-CNRS, 655, av. de l’Europe, 38330, Montbonnot, France
97 rdf:type schema:Organization
98 Neb1abd41b90e4a73b1142ff0d7e2dc69 schema:name INRIA, GRAVIR-CNRS, 655, av. de l’Europe, 38330, Montbonnot, France
99 rdf:type schema:Organization
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
104 schema:name Artificial Intelligence and Image Processing
105 rdf:type schema:DefinedTerm
106 sg:journal.1032807 schema:issn 0920-5691
107 1573-1405
108 schema:name International Journal of Computer Vision
109 rdf:type schema:Periodical
110 sg:person.011725725543.08 schema:affiliation N0d6f456e223742c6a1b2a932c9e72d7e
111 schema:familyName Marszałek
112 schema:givenName M.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011725725543.08
114 rdf:type schema:Person
115 sg:person.01243311462.17 schema:affiliation Ne0815d63b3364d098c6aa3668c9e66e3
116 schema:familyName Zhang
117 schema:givenName J.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243311462.17
119 rdf:type schema:Person
120 sg:person.01270671277.61 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
121 schema:familyName Lazebnik
122 schema:givenName S.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270671277.61
124 rdf:type schema:Person
125 sg:person.014001416002.35 schema:affiliation Neb1abd41b90e4a73b1142ff0d7e2dc69
126 schema:familyName Schmid
127 schema:givenName C.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014001416002.35
129 rdf:type schema:Person
130 sg:pub.10.1007/11550518_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021525040
131 https://doi.org/10.1007/11550518_41
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/3-540-47969-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046596731
134 https://doi.org/10.1007/3-540-47969-4_9
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/3-540-47977-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016201178
137 https://doi.org/10.1007/3-540-47977-5_17
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/3-540-47979-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015337224
140 https://doi.org/10.1007/3-540-47979-1_8
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-3-540-24671-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046580260
143 https://doi.org/10.1007/978-3-540-24671-8_6
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/978-3-540-24673-2_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045827469
146 https://doi.org/10.1007/978-3-540-24673-2_21
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf00058750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025865092
149 https://doi.org/10.1007/bf00058750
150 rdf:type schema:CreativeWork
151 sg:pub.10.1023/a:1008045108935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041767492
152 https://doi.org/10.1023/a:1008045108935
153 rdf:type schema:CreativeWork
154 sg:pub.10.1023/a:1008120406972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007590088
155 https://doi.org/10.1023/a:1008120406972
156 rdf:type schema:CreativeWork
157 sg:pub.10.1023/a:1011126920638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046312359
158 https://doi.org/10.1023/a:1011126920638
159 rdf:type schema:CreativeWork
160 sg:pub.10.1023/a:1026543900054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006187360
161 https://doi.org/10.1023/a:1026543900054
162 rdf:type schema:CreativeWork
163 sg:pub.10.1023/b:visi.0000027790.02288.f2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024638466
164 https://doi.org/10.1023/b:visi.0000027790.02288.f2
165 rdf:type schema:CreativeWork
166 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
167 https://doi.org/10.1023/b:visi.0000029664.99615.94
168 rdf:type schema:CreativeWork
169 sg:pub.10.1023/b:visi.0000042934.15159.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022591804
170 https://doi.org/10.1023/b:visi.0000042934.15159.49
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/290091a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040887630
173 https://doi.org/10.1038/290091a0
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/0031-3203(92)90099-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027002452
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/34.531803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156442
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/34.67648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156772
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/34.683777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156825
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/34.765655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156951
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/72.788646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219239
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/cvpr.2003.1211479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093624919
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/cvpr.2003.1211497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093305113
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/cvpr.2004.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094251884
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/cvpr.2005.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094706338
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/cvpr.2005.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094013418
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/cvpr.2005.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095244523
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/cvpr.2005.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093271322
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/cvpr.2005.320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094611604
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/iccv.2003.1238351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095214097
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/iccv.2003.1238663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094978467
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/iccv.2005.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094301320
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/iccv.2005.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095611654
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/iccv.2005.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093344916
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/iccv.2005.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094132829
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/icip.2003.1247092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095114883
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/icpr.2004.1334079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094584594
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/t-c.1973.223602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061455715
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/tnn.2005.848998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018563512
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/tpami.2004.1262185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742651
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tpami.2005.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742816
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/tpami.2005.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742845
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1117/12.143648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015213336
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1145/300776.300778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043167095
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.35403.31 schema:alternateName University of Illinois at Urbana Champaign
234 schema:name Beckman Institute, University of Illinois, 405 N. Mathews Ave., 61801, Urbana, IL, USA
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...