Personalizing influence diagrams: applying online learning strategies to dialogue management View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

David Maxwell Chickering, Tim Paek

ABSTRACT

We consider the problem of adapting the parameters of an influence diagram in an online fashion for real-time personalization. This problem is important when we use the influence diagram repeatedly to make decisions and we are uncertain about its parameters. We describe learning algorithms to solve this problem. In particular, we show how to modify various explore-versus-exploit strategies that are known to work well for Markov decision processes to the more general influence-diagram model. As an illustration, we describe how our techniques for online personalization allow a voice-enabled browser to adapt to a particular speaker for spoken dialogue management. We evaluate all the explore-versus-exploit strategies in this domain. More... »

PAGES

71-91

References to SciGraph publications

  • 2001-03. Predictive Statistical Models for User Modeling in USER MODELING AND USER-ADAPTED INTERACTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11257-006-9020-7

    DOI

    http://dx.doi.org/10.1007/s11257-006-9020-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041445852


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Microsoft (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419815.0", 
              "name": [
                "Microsoft Research, One Microsoft Way, 98052, Redmond, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chickering", 
            "givenName": "David Maxwell", 
            "id": "sg:person.011240332636.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011240332636.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microsoft (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419815.0", 
              "name": [
                "Microsoft Research, One Microsoft Way, 98052, Redmond, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paek", 
            "givenName": "Tim", 
            "id": "sg:person.012601701553.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012601701553.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1098/rsta.2000.0593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003146152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-4832-8287-9.50042-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011847288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011175525451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037851950", 
              "https://doi.org/10.1023/a:1011175525451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/25.3-4.285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059415697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.52548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061122306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.1998.712192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/deca.1050.0020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064706028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.47.9.1235.9779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064722162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1995.492488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095824458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1075218.1075231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099236137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1075218.1075231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099236137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105538429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105579475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105579535"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-03", 
        "datePublishedReg": "2007-03-01", 
        "description": "We consider the problem of adapting the parameters of an influence diagram in an online fashion for real-time personalization. This problem is important when we use the influence diagram repeatedly to make decisions and we are uncertain about its parameters. We describe learning algorithms to solve this problem. In particular, we show how to modify various explore-versus-exploit strategies that are known to work well for Markov decision processes to the more general influence-diagram model. As an illustration, we describe how our techniques for online personalization allow a voice-enabled browser to adapt to a particular speaker for spoken dialogue management. We evaluate all the explore-versus-exploit strategies in this domain.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11257-006-9020-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031131", 
            "issn": [
              "0924-1868", 
              "1573-1391"
            ], 
            "name": "User Modeling and User-Adapted Interaction", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Personalizing influence diagrams: applying online learning strategies to dialogue management", 
        "pagination": "71-91", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c56fbe9d03375d24702f11fe87538ead82f26305c79261d71c9c4c0738fa834b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11257-006-9020-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041445852"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11257-006-9020-7", 
          "https://app.dimensions.ai/details/publication/pub.1041445852"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000592.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11257-006-9020-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11257-006-9020-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11257-006-9020-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11257-006-9020-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11257-006-9020-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11257-006-9020-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ne43eebe297e24405a04061593153c184
    4 schema:citation sg:pub.10.1023/a:1011175525451
    5 https://doi.org/10.1016/b978-1-4832-8287-9.50042-6
    6 https://doi.org/10.1093/biomet/25.3-4.285
    7 https://doi.org/10.1098/rsta.2000.0593
    8 https://doi.org/10.1109/21.52548
    9 https://doi.org/10.1109/sfcs.1995.492488
    10 https://doi.org/10.1109/tnn.1998.712192
    11 https://doi.org/10.1287/deca.1050.0020
    12 https://doi.org/10.1287/mnsc.47.9.1235.9779
    13 https://doi.org/10.1613/jair.301
    14 https://doi.org/10.1613/jair.575
    15 https://doi.org/10.1613/jair.859
    16 https://doi.org/10.3115/1075218.1075231
    17 schema:datePublished 2007-03
    18 schema:datePublishedReg 2007-03-01
    19 schema:description We consider the problem of adapting the parameters of an influence diagram in an online fashion for real-time personalization. This problem is important when we use the influence diagram repeatedly to make decisions and we are uncertain about its parameters. We describe learning algorithms to solve this problem. In particular, we show how to modify various explore-versus-exploit strategies that are known to work well for Markov decision processes to the more general influence-diagram model. As an illustration, we describe how our techniques for online personalization allow a voice-enabled browser to adapt to a particular speaker for spoken dialogue management. We evaluate all the explore-versus-exploit strategies in this domain.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf Nee50329a3aed480683c746977c7dd20e
    24 Nef7d286716a94967a727340fedd8c875
    25 sg:journal.1031131
    26 schema:name Personalizing influence diagrams: applying online learning strategies to dialogue management
    27 schema:pagination 71-91
    28 schema:productId N5d83b089cfc14fc882400a30c95a3cf8
    29 N9804ee6d815b44259ed7c9a95980c8c0
    30 Na691840c1a4c4102a4fce9abe88cef49
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041445852
    32 https://doi.org/10.1007/s11257-006-9020-7
    33 schema:sdDatePublished 2019-04-11T02:28
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N8543f2109ab043ef9512901366cc2c48
    36 schema:url http://link.springer.com/10.1007%2Fs11257-006-9020-7
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N1c5107ae43a64b6c9a242e3fefa78dc1 rdf:first sg:person.012601701553.65
    41 rdf:rest rdf:nil
    42 N5d83b089cfc14fc882400a30c95a3cf8 schema:name dimensions_id
    43 schema:value pub.1041445852
    44 rdf:type schema:PropertyValue
    45 N8543f2109ab043ef9512901366cc2c48 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N9804ee6d815b44259ed7c9a95980c8c0 schema:name doi
    48 schema:value 10.1007/s11257-006-9020-7
    49 rdf:type schema:PropertyValue
    50 Na691840c1a4c4102a4fce9abe88cef49 schema:name readcube_id
    51 schema:value c56fbe9d03375d24702f11fe87538ead82f26305c79261d71c9c4c0738fa834b
    52 rdf:type schema:PropertyValue
    53 Ne43eebe297e24405a04061593153c184 rdf:first sg:person.011240332636.47
    54 rdf:rest N1c5107ae43a64b6c9a242e3fefa78dc1
    55 Nee50329a3aed480683c746977c7dd20e schema:issueNumber 1-2
    56 rdf:type schema:PublicationIssue
    57 Nef7d286716a94967a727340fedd8c875 schema:volumeNumber 17
    58 rdf:type schema:PublicationVolume
    59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Information and Computing Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Artificial Intelligence and Image Processing
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1031131 schema:issn 0924-1868
    66 1573-1391
    67 schema:name User Modeling and User-Adapted Interaction
    68 rdf:type schema:Periodical
    69 sg:person.011240332636.47 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
    70 schema:familyName Chickering
    71 schema:givenName David Maxwell
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011240332636.47
    73 rdf:type schema:Person
    74 sg:person.012601701553.65 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
    75 schema:familyName Paek
    76 schema:givenName Tim
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012601701553.65
    78 rdf:type schema:Person
    79 sg:pub.10.1023/a:1011175525451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037851950
    80 https://doi.org/10.1023/a:1011175525451
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/b978-1-4832-8287-9.50042-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011847288
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1093/biomet/25.3-4.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059415697
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1098/rsta.2000.0593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003146152
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1109/21.52548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122306
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1109/sfcs.1995.492488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095824458
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1109/tnn.1998.712192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716400
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1287/deca.1050.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064706028
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1287/mnsc.47.9.1235.9779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722162
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1613/jair.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105538429
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1613/jair.575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579475
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1613/jair.859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579535
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.3115/1075218.1075231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099236137
    105 rdf:type schema:CreativeWork
    106 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
    107 schema:name Microsoft Research, One Microsoft Way, 98052, Redmond, WA, USA
    108 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...