The clinical utility of prostate cancer heterogeneity using texture analysis of multiparametric MRI View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

Maira Hameed, Balaji Ganeshan, Joshua Shur, Subhabrata Mukherjee, Asim Afaq, Deepak Batura

ABSTRACT

PURPOSE: To determine if multiparametric MRI (mpMRI) derived filtration-histogram based texture analysis (TA) can differentiate between different Gleason scores (GS) and the D'Amico risk in prostate cancer. METHODS: We retrospectively studied patients whose pre-operative 1.5T mpMRI had shown a visible tumour and who subsequently underwent radical prostatectomy (RP). Guided by tumour location from the histopathology report, we drew a region of interest around the dominant visible lesion on a single axial slice on the T2, Apparent Diffusion Coefficient (ADC) map and early arterial phase post-contrast T1 image. We then performed TA with a filtration-histogram software (TexRAD -Feedback Medical Ltd, Cambridge, UK). We correlated GS and D'Amico risk with texture using the Spearman's rank correlation test. RESULTS: We had 26 RP patients with an MR-visible tumour. Mean of positive pixels (MPP) on ADC showed a significant negative correlation with GS at coarse texture scales. MPP showed a significant negative correlation with GS without filtration and with medium filtration. MRI contrast texture without filtration showed a significant, negative correlation with D'Amico score. MR T2 texture showed a significant, negative correlation with the D'Amico risk, particularly at textures without filtration, medium texture scales and coarse texture scales. CONCLUSION: ADC map mpMRI TA correlated negatively with GS, and T2 and post-contrast images with the D'Amico risk score. These associations may allow for better assessment of disease prognosis and a non-invasive method of follow-up for patients on surveillance. Further, identifying clinically significant prostate cancer is essential to reduce harm from over-diagnosis and over-treatment. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11255-019-02134-0

DOI

http://dx.doi.org/10.1007/s11255-019-02134-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113144189

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30929224


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College Healthcare NHS Trust", 
          "id": "https://www.grid.ac/institutes/grid.417895.6", 
          "name": [
            "Department of Radiology, Imperial College Healthcare NHS Trust, South Wharf Road, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hameed", 
        "givenName": "Maira", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London Hospitals NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.52996.31", 
          "name": [
            "Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, Euston Road, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganeshan", 
        "givenName": "Balaji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Health Network", 
          "id": "https://www.grid.ac/institutes/grid.231844.8", 
          "name": [
            "Joint Department of Medical Imaging, University Health Network, Toronto, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shur", 
        "givenName": "Joshua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartford And Gravesham NHS Trust", 
          "id": "https://www.grid.ac/institutes/grid.439553.d", 
          "name": [
            "Department of Urology, Dartford and Gravesham NHS Trust, Darenth Wood Road, Dartford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukherjee", 
        "givenName": "Subhabrata", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London Hospitals NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.52996.31", 
          "name": [
            "Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, Euston Road, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Afaq", 
        "givenName": "Asim", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London North West Healthcare NHS Trust", 
          "id": "https://www.grid.ac/institutes/grid.439803.5", 
          "name": [
            "Department of Urology, London North West University Healthcare NHS Trust, Watford Road, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batura", 
        "givenName": "Deepak", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2502071879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000029037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001262488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001262488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.24.2180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002695176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00345-010-0579-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005202882", 
          "https://doi.org/10.1007/s00345-010-0579-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.280.11.969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008293054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13130973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008646232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2319-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010883759", 
          "https://doi.org/10.1007/s00330-011-2319-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2319-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010883759", 
          "https://doi.org/10.1007/s00330-011-2319-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/195176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013028682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2010.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014374411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/pcan.2009.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017309911", 
          "https://doi.org/10.1038/pcan.2009.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/pcan.2009.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017309911", 
          "https://doi.org/10.1038/pcan.2009.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14130569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019115367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.juro.2008.07.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019688546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2010.09808.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3701-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022449857", 
          "https://doi.org/10.1007/s00330-015-3701-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200105033441806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024117958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4579-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025531585", 
          "https://doi.org/10.1007/s00330-016-4579-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4579-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025531585", 
          "https://doi.org/10.1007/s00330-016-4579-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11255-016-1212-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031011702", 
          "https://doi.org/10.1007/s11255-016-1212-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.2012.11611.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034256689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2795-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034542472", 
          "https://doi.org/10.1007/s00330-013-2795-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2011.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036334226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-012-0196-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036528660", 
          "https://doi.org/10.1007/s13244-012-0196-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2377-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041692485", 
          "https://doi.org/10.1007/s00330-011-2377-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042577994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042577994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2493080236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043229878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3386-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043874933", 
          "https://doi.org/10.1007/s00330-014-3386-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3386-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043874933", 
          "https://doi.org/10.1007/s00330-014-3386-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2013.09.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045734133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048805893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2013.9045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050857219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms18040821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084772979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4877-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085989217", 
          "https://doi.org/10.1007/s00330-017-4877-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4877-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085989217", 
          "https://doi.org/10.1007/s00330-017-4877-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1801993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101566851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tbj.13032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101844799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.26184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106130256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.26184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106130256"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-30", 
    "datePublishedReg": "2019-03-30", 
    "description": "PURPOSE: To determine if multiparametric MRI (mpMRI) derived filtration-histogram based texture analysis (TA) can differentiate between different Gleason scores (GS) and the D'Amico risk in prostate cancer.\nMETHODS: We retrospectively studied patients whose pre-operative 1.5T mpMRI had shown a visible tumour and who subsequently underwent radical prostatectomy (RP). Guided by tumour location from the histopathology report, we drew a region of interest around the dominant visible lesion on a single axial slice on the T2, Apparent Diffusion Coefficient (ADC) map and early arterial phase post-contrast T1 image. We then performed TA with a filtration-histogram software (TexRAD -Feedback Medical Ltd, Cambridge, UK). We correlated GS and D'Amico risk with texture using the Spearman's rank correlation test.\nRESULTS: We had 26 RP patients with an MR-visible tumour. Mean of positive pixels (MPP) on ADC showed a significant negative correlation with GS at coarse texture scales. MPP showed a significant negative correlation with GS without filtration and with medium filtration. MRI contrast texture without filtration showed a significant, negative correlation with D'Amico score. MR T2 texture showed a significant, negative correlation with the D'Amico risk, particularly at textures without filtration, medium texture scales and coarse texture scales.\nCONCLUSION: ADC map mpMRI TA correlated negatively with GS, and T2 and post-contrast images with the D'Amico risk score. These associations may allow for better assessment of disease prognosis and a non-invasive method of follow-up for patients on surveillance. Further, identifying clinically significant prostate cancer is essential to reduce harm from over-diagnosis and over-treatment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11255-019-02134-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1014320", 
        "issn": [
          "0924-8455", 
          "1573-7306"
        ], 
        "name": "Geriatric Nephrology and Urology", 
        "type": "Periodical"
      }
    ], 
    "name": "The clinical utility of prostate cancer heterogeneity using texture analysis of multiparametric MRI", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "96923df4bcd24be18d09c48ac71bb1516031d5971a0be20384db9a80e00fbdf2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30929224"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0262521"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11255-019-02134-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113144189"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11255-019-02134-0", 
      "https://app.dimensions.ai/details/publication/pub.1113144189"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11255-019-02134-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11255-019-02134-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11255-019-02134-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11255-019-02134-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11255-019-02134-0'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      59 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11255-019-02134-0 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Nee6e4741177d464bb96b243eab31efba
4 schema:citation sg:pub.10.1007/s00330-011-2319-8
5 sg:pub.10.1007/s00330-011-2377-y
6 sg:pub.10.1007/s00330-013-2795-0
7 sg:pub.10.1007/s00330-014-3386-4
8 sg:pub.10.1007/s00330-015-3701-8
9 sg:pub.10.1007/s00330-016-4579-9
10 sg:pub.10.1007/s00330-017-4877-x
11 sg:pub.10.1007/s00345-010-0579-6
12 sg:pub.10.1007/s11255-016-1212-4
13 sg:pub.10.1007/s13244-012-0196-6
14 sg:pub.10.1038/pcan.2009.42
15 https://doi.org/10.1001/jama.280.11.969
16 https://doi.org/10.1002/jmri.21824
17 https://doi.org/10.1002/jmri.26184
18 https://doi.org/10.1016/j.crad.2011.08.012
19 https://doi.org/10.1016/j.eururo.2010.12.009
20 https://doi.org/10.1016/j.eururo.2013.09.046
21 https://doi.org/10.1016/j.juro.2008.07.051
22 https://doi.org/10.1056/nejm200105033441806
23 https://doi.org/10.1056/nejmoa1801993
24 https://doi.org/10.1097/rli.0000000000000116
25 https://doi.org/10.1102/1470-7330.2013.9045
26 https://doi.org/10.1111/j.1464-410x.2010.09808.x
27 https://doi.org/10.1111/j.1464-410x.2012.11611.x
28 https://doi.org/10.1111/tbj.13032
29 https://doi.org/10.1148/radiol.10100021
30 https://doi.org/10.1148/radiol.13130973
31 https://doi.org/10.1148/radiol.14130569
32 https://doi.org/10.1148/radiol.2493080236
33 https://doi.org/10.1148/radiol.2502071879
34 https://doi.org/10.1155/2012/195176
35 https://doi.org/10.1200/jco.2009.24.2180
36 https://doi.org/10.3390/ijms18040821
37 schema:datePublished 2019-03-30
38 schema:datePublishedReg 2019-03-30
39 schema:description PURPOSE: To determine if multiparametric MRI (mpMRI) derived filtration-histogram based texture analysis (TA) can differentiate between different Gleason scores (GS) and the D'Amico risk in prostate cancer. METHODS: We retrospectively studied patients whose pre-operative 1.5T mpMRI had shown a visible tumour and who subsequently underwent radical prostatectomy (RP). Guided by tumour location from the histopathology report, we drew a region of interest around the dominant visible lesion on a single axial slice on the T2, Apparent Diffusion Coefficient (ADC) map and early arterial phase post-contrast T1 image. We then performed TA with a filtration-histogram software (TexRAD -Feedback Medical Ltd, Cambridge, UK). We correlated GS and D'Amico risk with texture using the Spearman's rank correlation test. RESULTS: We had 26 RP patients with an MR-visible tumour. Mean of positive pixels (MPP) on ADC showed a significant negative correlation with GS at coarse texture scales. MPP showed a significant negative correlation with GS without filtration and with medium filtration. MRI contrast texture without filtration showed a significant, negative correlation with D'Amico score. MR T2 texture showed a significant, negative correlation with the D'Amico risk, particularly at textures without filtration, medium texture scales and coarse texture scales. CONCLUSION: ADC map mpMRI TA correlated negatively with GS, and T2 and post-contrast images with the D'Amico risk score. These associations may allow for better assessment of disease prognosis and a non-invasive method of follow-up for patients on surveillance. Further, identifying clinically significant prostate cancer is essential to reduce harm from over-diagnosis and over-treatment.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf sg:journal.1014320
44 schema:name The clinical utility of prostate cancer heterogeneity using texture analysis of multiparametric MRI
45 schema:pagination 1-8
46 schema:productId N38e6e4bb74504f8d9b763c5a5b574296
47 N3f065f2bbc364312b221406e12559aa9
48 Na05ba477048347cc8984748e55074720
49 Na267c58a75554e42b5c8097c993d9244
50 Nc135623762e8412ab5a935b7084f8647
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113144189
52 https://doi.org/10.1007/s11255-019-02134-0
53 schema:sdDatePublished 2019-04-11T13:35
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N060043b80cb34916a30de1d7b9cf5296
56 schema:url https://link.springer.com/10.1007%2Fs11255-019-02134-0
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N060043b80cb34916a30de1d7b9cf5296 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N0feae71d8e5d4f70ad653318dae71bb0 schema:affiliation https://www.grid.ac/institutes/grid.417895.6
63 schema:familyName Hameed
64 schema:givenName Maira
65 rdf:type schema:Person
66 N2685d34593ea40cf935667a51b82d224 rdf:first Nc65636e10fb848a2bd93d5aaa8422c58
67 rdf:rest Nb52c179124184c0ab62b94b782273a15
68 N38e6e4bb74504f8d9b763c5a5b574296 schema:name nlm_unique_id
69 schema:value 0262521
70 rdf:type schema:PropertyValue
71 N3f065f2bbc364312b221406e12559aa9 schema:name doi
72 schema:value 10.1007/s11255-019-02134-0
73 rdf:type schema:PropertyValue
74 N51fe1ac49f474205b2c082f027ba04ae schema:affiliation https://www.grid.ac/institutes/grid.52996.31
75 schema:familyName Ganeshan
76 schema:givenName Balaji
77 rdf:type schema:Person
78 N74dbcd9c43984b5ba084dfdc4926918c rdf:first Nfaecd30c977b41279e60ba4d6e3652bc
79 rdf:rest N9592f72e209a482886dc96cd0b1f2130
80 N9592f72e209a482886dc96cd0b1f2130 rdf:first Ne00821a628954d4693406e274f31058d
81 rdf:rest rdf:nil
82 N9c3246eb1b4a4c929308496f26953082 rdf:first N51fe1ac49f474205b2c082f027ba04ae
83 rdf:rest N2685d34593ea40cf935667a51b82d224
84 Na05ba477048347cc8984748e55074720 schema:name readcube_id
85 schema:value 96923df4bcd24be18d09c48ac71bb1516031d5971a0be20384db9a80e00fbdf2
86 rdf:type schema:PropertyValue
87 Na267c58a75554e42b5c8097c993d9244 schema:name dimensions_id
88 schema:value pub.1113144189
89 rdf:type schema:PropertyValue
90 Nb52c179124184c0ab62b94b782273a15 rdf:first Ndf66c455c1934d9188cf748cf107ef37
91 rdf:rest N74dbcd9c43984b5ba084dfdc4926918c
92 Nc135623762e8412ab5a935b7084f8647 schema:name pubmed_id
93 schema:value 30929224
94 rdf:type schema:PropertyValue
95 Nc65636e10fb848a2bd93d5aaa8422c58 schema:affiliation https://www.grid.ac/institutes/grid.231844.8
96 schema:familyName Shur
97 schema:givenName Joshua
98 rdf:type schema:Person
99 Ndf66c455c1934d9188cf748cf107ef37 schema:affiliation https://www.grid.ac/institutes/grid.439553.d
100 schema:familyName Mukherjee
101 schema:givenName Subhabrata
102 rdf:type schema:Person
103 Ne00821a628954d4693406e274f31058d schema:affiliation https://www.grid.ac/institutes/grid.439803.5
104 schema:familyName Batura
105 schema:givenName Deepak
106 rdf:type schema:Person
107 Nee6e4741177d464bb96b243eab31efba rdf:first N0feae71d8e5d4f70ad653318dae71bb0
108 rdf:rest N9c3246eb1b4a4c929308496f26953082
109 Nfaecd30c977b41279e60ba4d6e3652bc schema:affiliation https://www.grid.ac/institutes/grid.52996.31
110 schema:familyName Afaq
111 schema:givenName Asim
112 rdf:type schema:Person
113 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
114 schema:name Medical and Health Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
117 schema:name Oncology and Carcinogenesis
118 rdf:type schema:DefinedTerm
119 sg:journal.1014320 schema:issn 0924-8455
120 1573-7306
121 schema:name Geriatric Nephrology and Urology
122 rdf:type schema:Periodical
123 sg:pub.10.1007/s00330-011-2319-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010883759
124 https://doi.org/10.1007/s00330-011-2319-8
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00330-011-2377-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041692485
127 https://doi.org/10.1007/s00330-011-2377-y
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00330-013-2795-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034542472
130 https://doi.org/10.1007/s00330-013-2795-0
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00330-014-3386-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043874933
133 https://doi.org/10.1007/s00330-014-3386-4
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00330-015-3701-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022449857
136 https://doi.org/10.1007/s00330-015-3701-8
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00330-016-4579-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025531585
139 https://doi.org/10.1007/s00330-016-4579-9
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00330-017-4877-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085989217
142 https://doi.org/10.1007/s00330-017-4877-x
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00345-010-0579-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005202882
145 https://doi.org/10.1007/s00345-010-0579-6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11255-016-1212-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031011702
148 https://doi.org/10.1007/s11255-016-1212-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s13244-012-0196-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036528660
151 https://doi.org/10.1007/s13244-012-0196-6
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/pcan.2009.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017309911
154 https://doi.org/10.1038/pcan.2009.42
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1001/jama.280.11.969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008293054
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/jmri.21824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042577994
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/jmri.26184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106130256
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.crad.2011.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036334226
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.eururo.2010.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014374411
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.eururo.2013.09.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045734133
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.juro.2008.07.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019688546
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1056/nejm200105033441806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024117958
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1056/nejmoa1801993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101566851
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1097/rli.0000000000000116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001262488
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1102/1470-7330.2013.9045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050857219
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1464-410x.2010.09808.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169296
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1111/j.1464-410x.2012.11611.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034256689
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/tbj.13032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101844799
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1148/radiol.10100021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048805893
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1148/radiol.13130973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008646232
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1148/radiol.14130569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019115367
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1148/radiol.2493080236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043229878
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1148/radiol.2502071879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000029037
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1155/2012/195176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013028682
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1200/jco.2009.24.2180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002695176
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3390/ijms18040821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084772979
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.231844.8 schema:alternateName University Health Network
201 schema:name Joint Department of Medical Imaging, University Health Network, Toronto, Canada
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.417895.6 schema:alternateName Imperial College Healthcare NHS Trust
204 schema:name Department of Radiology, Imperial College Healthcare NHS Trust, South Wharf Road, London, UK
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.439553.d schema:alternateName Dartford And Gravesham NHS Trust
207 schema:name Department of Urology, Dartford and Gravesham NHS Trust, Darenth Wood Road, Dartford, UK
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.439803.5 schema:alternateName London North West Healthcare NHS Trust
210 schema:name Department of Urology, London North West University Healthcare NHS Trust, Watford Road, London, UK
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.52996.31 schema:alternateName University College London Hospitals NHS Foundation Trust
213 schema:name Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, Euston Road, London, UK
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...