Special Warped-Like Product Manifolds with (Weak) G2 Holonomy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-01

AUTHORS

S. Uğuz

ABSTRACT

By using the fiber-base decompositions of manifolds, the definition of warped-like product is regarded as a generalization of multiply warped product manifolds, by allowing the fiber metric to be not block diagonal. We consider the (3 + 3 + 1) decomposition of 7-dimensional warped-like product manifolds, which is called a special warped-like product of the form M = F × B; where the base B is a onedimensional Riemannian manifold and the fiber F has the form F = F1 × F2 where Fi; i = 1, 2, are Riemannian 3-manifolds. If all fibers are complete, connected, and simply connected, then they are isometric to S3 with constant curvature k > 0 in the class of special warped-like product metrics admitting the (weak) G2 holonomy determined by the fundamental 3-form. More... »

PAGES

1257-1272

References to SciGraph publications

  • 1982-12. Riemannian manifolds with structure groupG2 in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • 1990-02. Einstein metrics onS3,R3 andR4 bundles in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1971-12. Weak holonomy groups in MATHEMATISCHE ZEITSCHRIFT
  • 2013-02. Lee form and special warped-like product manifolds with locally conformally parallel Spin(7) structure in ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
  • 1983. Foundations of Differentiable Manifolds and Lie Groups in NONE
  • 2000-08. Riemannian, Symplectic and Weak Holonomy in ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
  • 1968-04. Riemannian spaces with exceptional holonomy groups in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • Journal

    TITLE

    Ukrainian Mathematical Journal

    ISSUE

    8

    VOLUME

    65

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11253-014-0856-4

    DOI

    http://dx.doi.org/10.1007/s11253-014-0856-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009080821


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harran University", 
              "id": "https://www.grid.ac/institutes/grid.411999.d", 
              "name": [
                "Harran University, Sanliurfa, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "U\u011fuz", 
            "givenName": "S.", 
            "id": "sg:person.014255257731.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255257731.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1006769532110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003765532", 
              "https://doi.org/10.1023/a:1006769532110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0396(02)00004-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006702980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0396(02)00004-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006702980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01760975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011608946", 
              "https://doi.org/10.1007/bf01760975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01760975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011608946", 
              "https://doi.org/10.1007/bf01760975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(98)00340-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014431178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1799-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017267575", 
              "https://doi.org/10.1007/978-1-4757-1799-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1799-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017267575", 
              "https://doi.org/10.1007/978-1-4757-1799-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0393-0440(03)00005-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018370681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0393-0440(03)00005-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018370681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02104500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020861207", 
              "https://doi.org/10.1007/bf02104500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02104500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020861207", 
              "https://doi.org/10.1007/bf02104500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0393-0440(02)00018-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023337313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.laa.2010.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028648866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/jlms/53.2.407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032626176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037901042", 
              "https://doi.org/10.1007/bf01075943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037901042", 
              "https://doi.org/10.1007/bf01075943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/18/24/314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039057892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01109983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043031284", 
              "https://doi.org/10.1007/bf01109983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01109983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043031284", 
              "https://doi.org/10.1007/bf01109983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomphys.2011.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045328665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10455-012-9337-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047295020", 
              "https://doi.org/10.1007/s10455-012-9337-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(01)00559-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048051255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(98)01411-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050378565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/18/5/304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051591374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-89-05839-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1971360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069676637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/ajm.2001.v5.n1.a9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/bsmf.1105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083660005"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-01", 
        "datePublishedReg": "2014-01-01", 
        "description": "By using the fiber-base decompositions of manifolds, the definition of warped-like product is regarded as a generalization of multiply warped product manifolds, by allowing the fiber metric to be not block diagonal. We consider the (3 + 3 + 1) decomposition of 7-dimensional warped-like product manifolds, which is called a special warped-like product of the form M = F \u00d7 B; where the base B is a onedimensional Riemannian manifold and the fiber F has the form F = F1 \u00d7 F2 where Fi; i = 1, 2, are Riemannian 3-manifolds. If all fibers are complete, connected, and simply connected, then they are isometric to S3 with constant curvature k > 0 in the class of special warped-like product metrics admitting the (weak) G2 holonomy determined by the fundamental 3-form.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11253-014-0856-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136417", 
            "issn": [
              "0041-5995", 
              "1573-9376"
            ], 
            "name": "Ukrainian Mathematical Journal", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "name": "Special Warped-Like Product Manifolds with (Weak) G2 Holonomy", 
        "pagination": "1257-1272", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2b433c0c9e89c45f309f70afc1707e1341a29d5f56e2ea89d9aa91feede62e2f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11253-014-0856-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009080821"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11253-014-0856-4", 
          "https://app.dimensions.ai/details/publication/pub.1009080821"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000520.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11253-014-0856-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11253-014-0856-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11253-014-0856-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11253-014-0856-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11253-014-0856-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11253-014-0856-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6073d2bd9c4e47d5855ab2625caae1ae
    4 schema:citation sg:pub.10.1007/978-1-4757-1799-0
    5 sg:pub.10.1007/bf01075943
    6 sg:pub.10.1007/bf01109983
    7 sg:pub.10.1007/bf01760975
    8 sg:pub.10.1007/bf02104500
    9 sg:pub.10.1007/s10455-012-9337-x
    10 sg:pub.10.1023/a:1006769532110
    11 https://doi.org/10.1016/j.geomphys.2011.02.009
    12 https://doi.org/10.1016/j.laa.2010.11.002
    13 https://doi.org/10.1016/s0022-0396(02)00004-9
    14 https://doi.org/10.1016/s0370-2693(98)00340-2
    15 https://doi.org/10.1016/s0370-2693(98)01411-7
    16 https://doi.org/10.1016/s0393-0440(02)00018-9
    17 https://doi.org/10.1016/s0393-0440(03)00005-6
    18 https://doi.org/10.1016/s0550-3213(01)00559-4
    19 https://doi.org/10.1088/0264-9381/18/24/314
    20 https://doi.org/10.1088/0264-9381/18/5/304
    21 https://doi.org/10.1112/jlms/53.2.407
    22 https://doi.org/10.1215/s0012-7094-89-05839-0
    23 https://doi.org/10.2307/1971360
    24 https://doi.org/10.24033/bsmf.1105
    25 https://doi.org/10.4310/ajm.2001.v5.n1.a9
    26 schema:datePublished 2014-01
    27 schema:datePublishedReg 2014-01-01
    28 schema:description By using the fiber-base decompositions of manifolds, the definition of warped-like product is regarded as a generalization of multiply warped product manifolds, by allowing the fiber metric to be not block diagonal. We consider the (3 + 3 + 1) decomposition of 7-dimensional warped-like product manifolds, which is called a special warped-like product of the form M = F × B; where the base B is a onedimensional Riemannian manifold and the fiber F has the form F = F1 × F2 where Fi; i = 1, 2, are Riemannian 3-manifolds. If all fibers are complete, connected, and simply connected, then they are isometric to S3 with constant curvature k > 0 in the class of special warped-like product metrics admitting the (weak) G2 holonomy determined by the fundamental 3-form.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N960f60483c77479c81c807e7eb054016
    33 Nfea7f5113d67417696db59795791c4e8
    34 sg:journal.1136417
    35 schema:name Special Warped-Like Product Manifolds with (Weak) G2 Holonomy
    36 schema:pagination 1257-1272
    37 schema:productId N2446f49add4e436a84465d426b3efdbe
    38 N60a08fa0613145f1852d364db0793dd5
    39 N9b6cc6338c814348b7a2287a5b7f7168
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009080821
    41 https://doi.org/10.1007/s11253-014-0856-4
    42 schema:sdDatePublished 2019-04-10T17:33
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N90fc77031c994adb801dac2de46c8e2d
    45 schema:url http://link.springer.com/10.1007%2Fs11253-014-0856-4
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N2446f49add4e436a84465d426b3efdbe schema:name readcube_id
    50 schema:value 2b433c0c9e89c45f309f70afc1707e1341a29d5f56e2ea89d9aa91feede62e2f
    51 rdf:type schema:PropertyValue
    52 N6073d2bd9c4e47d5855ab2625caae1ae rdf:first sg:person.014255257731.86
    53 rdf:rest rdf:nil
    54 N60a08fa0613145f1852d364db0793dd5 schema:name dimensions_id
    55 schema:value pub.1009080821
    56 rdf:type schema:PropertyValue
    57 N90fc77031c994adb801dac2de46c8e2d schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N960f60483c77479c81c807e7eb054016 schema:issueNumber 8
    60 rdf:type schema:PublicationIssue
    61 N9b6cc6338c814348b7a2287a5b7f7168 schema:name doi
    62 schema:value 10.1007/s11253-014-0856-4
    63 rdf:type schema:PropertyValue
    64 Nfea7f5113d67417696db59795791c4e8 schema:volumeNumber 65
    65 rdf:type schema:PublicationVolume
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1136417 schema:issn 0041-5995
    73 1573-9376
    74 schema:name Ukrainian Mathematical Journal
    75 rdf:type schema:Periodical
    76 sg:person.014255257731.86 schema:affiliation https://www.grid.ac/institutes/grid.411999.d
    77 schema:familyName Uğuz
    78 schema:givenName S.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255257731.86
    80 rdf:type schema:Person
    81 sg:pub.10.1007/978-1-4757-1799-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017267575
    82 https://doi.org/10.1007/978-1-4757-1799-0
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf01075943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037901042
    85 https://doi.org/10.1007/bf01075943
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf01109983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043031284
    88 https://doi.org/10.1007/bf01109983
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf01760975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011608946
    91 https://doi.org/10.1007/bf01760975
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf02104500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020861207
    94 https://doi.org/10.1007/bf02104500
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s10455-012-9337-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047295020
    97 https://doi.org/10.1007/s10455-012-9337-x
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1023/a:1006769532110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003765532
    100 https://doi.org/10.1023/a:1006769532110
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/j.geomphys.2011.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045328665
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.laa.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028648866
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/s0022-0396(02)00004-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006702980
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/s0370-2693(98)00340-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014431178
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/s0370-2693(98)01411-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050378565
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0393-0440(02)00018-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023337313
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/s0393-0440(03)00005-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018370681
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/s0550-3213(01)00559-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048051255
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1088/0264-9381/18/24/314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039057892
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1088/0264-9381/18/5/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051591374
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1112/jlms/53.2.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032626176
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1215/s0012-7094-89-05839-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419534
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.2307/1971360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676637
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.24033/bsmf.1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660005
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.4310/ajm.2001.v5.n1.a9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456335
    131 rdf:type schema:CreativeWork
    132 https://www.grid.ac/institutes/grid.411999.d schema:alternateName Harran University
    133 schema:name Harran University, Sanliurfa, Turkey
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...