Transgenic mimicry of pathogen attack stimulates growth and secondary metabolite accumulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07-31

AUTHORS

Kuntal Chaudhuri, Sudripta Das, Moumita Bandyopadhyay, Andreja Zalar, Albert Kollmann, Sumita Jha, David Tepfer

ABSTRACT

Plant secondary metabolites, including pharmaceuticals, flavorings and aromas, are often produced in response to stress. We used chemical inducers of the pathogen defense response (jasmonic acid, salicylate, killed fungi, oligosaccharides and the fungal elicitor protein, cryptogein) to increase metabolite and biomass production in transformed root cultures of the medicinal plant, Withania somnifera, and the weed, Convolvulus sepium. In an effort to genetically mimic the observed effects of cryptogein, we employed Agrobacterium rhizogenes to insert a synthetic gene encoding cryptogein into the roots of C. sepium, W. somnifera and Tylophora tanakae. This genetic transformation was associated with stimulation in both secondary metabolite production and growth in the first two species, and in growth in the third. In whole plants of Convolvulus arvensis and Arabidopsis thaliana, transformation with the cryptogein gene led, respectively, to increases in the calystegines and certain flavonoids. A similar transgenic mimicry of pathogen attack was previously employed to stimulate resistance to the pathogen and abiotic stress. In the present study of biochemical phenotype, we show that transgenic mimicry is correlated with increased secondary metabolite production in transformed root cultures and whole plants. We propose that natural transformation with genes encoding the production of microbial elicitors could influence interactions between plants and other organisms. More... »

PAGES

121-134

References to SciGraph publications

  • 2006-02-16. Engineering isoflavone metabolism with an artificial bifunctional enzyme in PLANTA
  • 2004-07. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco in PLANT MOLECULAR BIOLOGY
  • 2004-01. Preparation of double-walled carbon nanotubes in SCIENCE BULLETIN
  • 2006-11-15. Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera in PLANT CELL REPORTS
  • 1989-09. Use of roots transformed by Agrobacterium rhizogenes in rhizosphere research: applications in studies of cadmium assimilation from sewage sludges in PLANT MOLECULAR BIOLOGY
  • 1995-02. Chemical synthesis, expression and mutagenesis of a gene encoding β-cryptogein, an elicitin produced by Phytophthora cryptogea in PLANT MOLECULAR BIOLOGY
  • 2005-01-20. Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones in PLANT CELL REPORTS
  • 1983. The Potential uses of Agrobacterium Rhizogenes in the Genetic Engineering of Higher Plants: Nature Got There First in GENETIC ENGINEERING IN EUKARYOTES
  • 1998-04. Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation in MOLECULAR GENETICS AND GENOMICS
  • 1983. The Biology of Genetic Transformation of Higher Plants by Agrobacterium rhizogenes in MOLECULAR GENETICS OF THE BACTERIA-PLANT INTERACTION
  • 2004-04. Expression ofCryptogein in tobacco plants exhibits enhanced disease resistance and tolerance to salt stress in SCIENCE BULLETIN
  • 2006-01-05. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana in PLANTA
  • 1983-09. A plant DNA minipreparation: Version II in PLANT MOLECULAR BIOLOGY REPORTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11248-008-9201-8

    DOI

    http://dx.doi.org/10.1007/s11248-008-9201-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007988666

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18668338


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Agrobacterium tumefaciens", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algal Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Convolvulus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Flavonoids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fungal Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Roots", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plants, Genetically Modified", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plants, Medicinal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transformation, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tropanes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tylophora", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Withania", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Botany, Vivekananda College, 269 Diamond Harbour Road, 700063, Calcutta, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India", 
                "Department of Botany, Vivekananda College, 269 Diamond Harbour Road, 700063, Calcutta, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chaudhuri", 
            "givenName": "Kuntal", 
            "id": "sg:person.01300745764.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300745764.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, Tea Research Association, 785008, Tocklai, Jorhat, Assam, India", 
              "id": "http://www.grid.ac/institutes/grid.482359.1", 
              "name": [
                "Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India", 
                "Department of Biotechnology, Tea Research Association, 785008, Tocklai, Jorhat, Assam, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Das", 
            "givenName": "Sudripta", 
            "id": "sg:person.01240506003.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240506003.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India", 
              "id": "http://www.grid.ac/institutes/grid.59056.3f", 
              "name": [
                "Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bandyopadhyay", 
            "givenName": "Moumita", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biologie de la Rhizosph\u00e8re, Institut National de la Recherche Agronomique, 78026, Versailles Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Biologie de la Rhizosph\u00e8re, Institut National de la Recherche Agronomique, 78026, Versailles Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zalar", 
            "givenName": "Andreja", 
            "id": "sg:person.013660210611.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660210611.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biologie de la Rhizosph\u00e8re, Institut National de la Recherche Agronomique, 78026, Versailles Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Biologie de la Rhizosph\u00e8re, Institut National de la Recherche Agronomique, 78026, Versailles Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kollmann", 
            "givenName": "Albert", 
            "id": "sg:person.015462147711.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015462147711.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India", 
              "id": "http://www.grid.ac/institutes/grid.59056.3f", 
              "name": [
                "Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jha", 
            "givenName": "Sumita", 
            "id": "sg:person.01066746431.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066746431.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biologie de la Rhizosph\u00e8re, Institut National de la Recherche Agronomique, 78026, Versailles Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Biologie de la Rhizosph\u00e8re, Institut National de la Recherche Agronomique, 78026, Versailles Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tepfer", 
            "givenName": "David", 
            "id": "sg:person.01361065542.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361065542.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02712670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003131267", 
              "https://doi.org/10.1007/bf02712670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02901750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016072872", 
              "https://doi.org/10.1007/bf02901750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-004-1521-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046393408", 
              "https://doi.org/10.1007/s11103-004-1521-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004380050688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002982112", 
              "https://doi.org/10.1007/s004380050688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00019323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000098341", 
              "https://doi.org/10.1007/bf00019323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00025317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040259206", 
              "https://doi.org/10.1007/bf00025317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-006-0260-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043975533", 
              "https://doi.org/10.1007/s00299-006-0260-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-005-0197-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036129913", 
              "https://doi.org/10.1007/s00425-005-0197-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-006-0233-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004901132", 
              "https://doi.org/10.1007/s00425-006-0233-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-69338-0_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089504408", 
              "https://doi.org/10.1007/978-3-642-69338-0_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-4493-3_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021762062", 
              "https://doi.org/10.1007/978-1-4684-4493-3_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02889751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024448169", 
              "https://doi.org/10.1007/bf02889751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-004-0904-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029408047", 
              "https://doi.org/10.1007/s00299-004-0904-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-07-31", 
        "datePublishedReg": "2008-07-31", 
        "description": "Plant secondary metabolites, including pharmaceuticals, flavorings and aromas, are often produced in response to stress. We used chemical inducers of the pathogen defense response (jasmonic acid, salicylate, killed fungi, oligosaccharides and the fungal elicitor protein, cryptogein) to increase metabolite and biomass production in transformed root cultures of the medicinal plant, Withania somnifera, and the weed, Convolvulus sepium. In an effort to genetically mimic the observed effects of cryptogein, we employed Agrobacterium rhizogenes to insert a synthetic gene encoding cryptogein into the roots of C.\u00a0sepium, W.\u00a0somnifera and Tylophora tanakae. This genetic transformation was associated with stimulation in both secondary metabolite production and growth in the first two species, and in growth in the third. In whole plants of Convolvulus arvensis and Arabidopsis thaliana, transformation with the cryptogein gene led, respectively, to increases in the calystegines and certain flavonoids. A similar transgenic mimicry of pathogen attack was previously employed to stimulate resistance to the pathogen and abiotic stress. In the present study of biochemical phenotype, we show that transgenic mimicry is correlated with increased secondary metabolite production in transformed root cultures and whole plants. We propose that natural transformation with genes encoding the production of microbial elicitors could influence interactions between plants and other organisms.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11248-008-9201-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1102526", 
            "issn": [
              "0962-8819", 
              "1573-9368"
            ], 
            "name": "Transgenic Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "secondary metabolite production", 
          "pathogen attack", 
          "whole plant", 
          "secondary metabolite accumulation", 
          "metabolite production", 
          "pathogen defense responses", 
          "root cultures", 
          "abiotic stresses", 
          "biomass production", 
          "cryptogein gene", 
          "Convolvulus arvensis", 
          "genetic transformation", 
          "Agrobacterium rhizogenes", 
          "defense responses", 
          "Arabidopsis thaliana", 
          "microbial elicitors", 
          "metabolite accumulation", 
          "plants", 
          "Tylophora tanakae", 
          "secondary metabolites", 
          "sepium", 
          "synthetic gene", 
          "chemical inducers", 
          "production", 
          "natural transformation", 
          "biochemical phenotype", 
          "genes", 
          "cryptogein", 
          "medicinal plants", 
          "Withania somnifera", 
          "growth", 
          "mimicry", 
          "weeds", 
          "arvensis", 
          "rhizogenes", 
          "certain flavonoids", 
          "somnifera", 
          "thaliana", 
          "roots", 
          "elicitors", 
          "pathogens", 
          "tanakae", 
          "stress", 
          "aroma", 
          "organisms", 
          "species", 
          "metabolites", 
          "phenotype", 
          "calystegines", 
          "inducer", 
          "resistance", 
          "accumulation", 
          "flavoring", 
          "culture", 
          "observed effects", 
          "present study", 
          "response", 
          "interaction", 
          "attacks", 
          "efforts", 
          "flavonoids", 
          "transformation", 
          "stimulation", 
          "increase", 
          "effect", 
          "pharmaceuticals", 
          "study", 
          "third"
        ], 
        "name": "Transgenic mimicry of pathogen attack stimulates growth and secondary metabolite accumulation", 
        "pagination": "121-134", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007988666"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11248-008-9201-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18668338"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11248-008-9201-8", 
          "https://app.dimensions.ai/details/publication/pub.1007988666"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_476.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11248-008-9201-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11248-008-9201-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11248-008-9201-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11248-008-9201-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11248-008-9201-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    301 TRIPLES      22 PREDICATES      124 URIs      100 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11248-008-9201-8 schema:about N1655555867ab4aef8389f3ef3dde195d
    2 N359aed8158d74b8bba25725eb4e356f0
    3 N3675060cfba647d390a60b3a1c1e618b
    4 N3d8c39636cc04380b7b2598aa7dc996e
    5 N3f2a99a524824ee5951550eb34c5efb9
    6 N50bd449da3804213aea0ff8bbd7f70b5
    7 N5990b01cbad74c8ab8a6c60a347da911
    8 N6149b35d913e4f9e8cd1ba4db5e810bc
    9 Na5e4c171420c4c6aac3339f9e3bd9387
    10 Nb565ff16a8ce4766bb71e845f6195acd
    11 Nd19a201d08d74b06b23cfcfba80bdffe
    12 Nd3ee02b8f6304ab19888c56a45d8c7ae
    13 Nfa400c21684b4f70b7675d4d30114a3c
    14 Nfd85b56f0f7e4fd2bd6fabd1a01d24d2
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 anzsrc-for:0604
    18 anzsrc-for:0605
    19 anzsrc-for:0607
    20 schema:author Na044acaf7c3c44f6be404686f2054258
    21 schema:citation sg:pub.10.1007/978-1-4684-4493-3_17
    22 sg:pub.10.1007/978-3-642-69338-0_28
    23 sg:pub.10.1007/bf00019323
    24 sg:pub.10.1007/bf00025317
    25 sg:pub.10.1007/bf02712670
    26 sg:pub.10.1007/bf02889751
    27 sg:pub.10.1007/bf02901750
    28 sg:pub.10.1007/s00299-004-0904-x
    29 sg:pub.10.1007/s00299-006-0260-0
    30 sg:pub.10.1007/s00425-005-0197-5
    31 sg:pub.10.1007/s00425-006-0233-0
    32 sg:pub.10.1007/s004380050688
    33 sg:pub.10.1007/s11103-004-1521-3
    34 schema:datePublished 2008-07-31
    35 schema:datePublishedReg 2008-07-31
    36 schema:description Plant secondary metabolites, including pharmaceuticals, flavorings and aromas, are often produced in response to stress. We used chemical inducers of the pathogen defense response (jasmonic acid, salicylate, killed fungi, oligosaccharides and the fungal elicitor protein, cryptogein) to increase metabolite and biomass production in transformed root cultures of the medicinal plant, Withania somnifera, and the weed, Convolvulus sepium. In an effort to genetically mimic the observed effects of cryptogein, we employed Agrobacterium rhizogenes to insert a synthetic gene encoding cryptogein into the roots of C. sepium, W. somnifera and Tylophora tanakae. This genetic transformation was associated with stimulation in both secondary metabolite production and growth in the first two species, and in growth in the third. In whole plants of Convolvulus arvensis and Arabidopsis thaliana, transformation with the cryptogein gene led, respectively, to increases in the calystegines and certain flavonoids. A similar transgenic mimicry of pathogen attack was previously employed to stimulate resistance to the pathogen and abiotic stress. In the present study of biochemical phenotype, we show that transgenic mimicry is correlated with increased secondary metabolite production in transformed root cultures and whole plants. We propose that natural transformation with genes encoding the production of microbial elicitors could influence interactions between plants and other organisms.
    37 schema:genre article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N255caf2724f943cf876aa33a2c8058e7
    41 N86d25c3fb21a482c9c3161b0febd5101
    42 sg:journal.1102526
    43 schema:keywords Agrobacterium rhizogenes
    44 Arabidopsis thaliana
    45 Convolvulus arvensis
    46 Tylophora tanakae
    47 Withania somnifera
    48 abiotic stresses
    49 accumulation
    50 aroma
    51 arvensis
    52 attacks
    53 biochemical phenotype
    54 biomass production
    55 calystegines
    56 certain flavonoids
    57 chemical inducers
    58 cryptogein
    59 cryptogein gene
    60 culture
    61 defense responses
    62 effect
    63 efforts
    64 elicitors
    65 flavonoids
    66 flavoring
    67 genes
    68 genetic transformation
    69 growth
    70 increase
    71 inducer
    72 interaction
    73 medicinal plants
    74 metabolite accumulation
    75 metabolite production
    76 metabolites
    77 microbial elicitors
    78 mimicry
    79 natural transformation
    80 observed effects
    81 organisms
    82 pathogen attack
    83 pathogen defense responses
    84 pathogens
    85 pharmaceuticals
    86 phenotype
    87 plants
    88 present study
    89 production
    90 resistance
    91 response
    92 rhizogenes
    93 root cultures
    94 roots
    95 secondary metabolite accumulation
    96 secondary metabolite production
    97 secondary metabolites
    98 sepium
    99 somnifera
    100 species
    101 stimulation
    102 stress
    103 study
    104 synthetic gene
    105 tanakae
    106 thaliana
    107 third
    108 transformation
    109 weeds
    110 whole plant
    111 schema:name Transgenic mimicry of pathogen attack stimulates growth and secondary metabolite accumulation
    112 schema:pagination 121-134
    113 schema:productId N02933a2f83564b94a878ae7bf30edf80
    114 N1b5cdf35c816428dba7c7d20332b5799
    115 Nda9c5e0be6e44feba8828991a9726abb
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007988666
    117 https://doi.org/10.1007/s11248-008-9201-8
    118 schema:sdDatePublished 2022-06-01T22:06
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N313eb4a1ae3949b6947fbbe8cc712e14
    121 schema:url https://doi.org/10.1007/s11248-008-9201-8
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N02933a2f83564b94a878ae7bf30edf80 schema:name pubmed_id
    126 schema:value 18668338
    127 rdf:type schema:PropertyValue
    128 N08675ab53a344b0d8f540ef1c33f7b50 rdf:first sg:person.01066746431.08
    129 rdf:rest Nf265812158274bfd8e4f098c88a9b6e1
    130 N0a6b809ce4e04ea88dc7736bf3192907 rdf:first sg:person.01240506003.46
    131 rdf:rest N1cb7182445a24a8bba12a7dc1c13061e
    132 N1655555867ab4aef8389f3ef3dde195d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Plants, Medicinal
    134 rdf:type schema:DefinedTerm
    135 N1b5cdf35c816428dba7c7d20332b5799 schema:name dimensions_id
    136 schema:value pub.1007988666
    137 rdf:type schema:PropertyValue
    138 N1cb7182445a24a8bba12a7dc1c13061e rdf:first N96410b71874e4c40bf6132255558ae61
    139 rdf:rest N9d1dea0de34e4df6867184a38002b024
    140 N255caf2724f943cf876aa33a2c8058e7 schema:volumeNumber 18
    141 rdf:type schema:PublicationVolume
    142 N313eb4a1ae3949b6947fbbe8cc712e14 schema:name Springer Nature - SN SciGraph project
    143 rdf:type schema:Organization
    144 N359aed8158d74b8bba25725eb4e356f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Plant Roots
    146 rdf:type schema:DefinedTerm
    147 N3675060cfba647d390a60b3a1c1e618b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Withania
    149 rdf:type schema:DefinedTerm
    150 N3d8c39636cc04380b7b2598aa7dc996e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Algal Proteins
    152 rdf:type schema:DefinedTerm
    153 N3f2a99a524824ee5951550eb34c5efb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Arabidopsis
    155 rdf:type schema:DefinedTerm
    156 N50bd449da3804213aea0ff8bbd7f70b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Flavonoids
    158 rdf:type schema:DefinedTerm
    159 N5990b01cbad74c8ab8a6c60a347da911 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Transformation, Genetic
    161 rdf:type schema:DefinedTerm
    162 N6149b35d913e4f9e8cd1ba4db5e810bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Agrobacterium tumefaciens
    164 rdf:type schema:DefinedTerm
    165 N6ea015f6ab1c4dd69379177bcf928fad rdf:first sg:person.015462147711.38
    166 rdf:rest N08675ab53a344b0d8f540ef1c33f7b50
    167 N86d25c3fb21a482c9c3161b0febd5101 schema:issueNumber 1
    168 rdf:type schema:PublicationIssue
    169 N96410b71874e4c40bf6132255558ae61 schema:affiliation grid-institutes:grid.59056.3f
    170 schema:familyName Bandyopadhyay
    171 schema:givenName Moumita
    172 rdf:type schema:Person
    173 N9d1dea0de34e4df6867184a38002b024 rdf:first sg:person.013660210611.48
    174 rdf:rest N6ea015f6ab1c4dd69379177bcf928fad
    175 Na044acaf7c3c44f6be404686f2054258 rdf:first sg:person.01300745764.35
    176 rdf:rest N0a6b809ce4e04ea88dc7736bf3192907
    177 Na5e4c171420c4c6aac3339f9e3bd9387 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Plant Diseases
    179 rdf:type schema:DefinedTerm
    180 Nb565ff16a8ce4766bb71e845f6195acd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Convolvulus
    182 rdf:type schema:DefinedTerm
    183 Nd19a201d08d74b06b23cfcfba80bdffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Fungal Proteins
    185 rdf:type schema:DefinedTerm
    186 Nd3ee02b8f6304ab19888c56a45d8c7ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Plants, Genetically Modified
    188 rdf:type schema:DefinedTerm
    189 Nda9c5e0be6e44feba8828991a9726abb schema:name doi
    190 schema:value 10.1007/s11248-008-9201-8
    191 rdf:type schema:PropertyValue
    192 Nf265812158274bfd8e4f098c88a9b6e1 rdf:first sg:person.01361065542.43
    193 rdf:rest rdf:nil
    194 Nfa400c21684b4f70b7675d4d30114a3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Tylophora
    196 rdf:type schema:DefinedTerm
    197 Nfd85b56f0f7e4fd2bd6fabd1a01d24d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Tropanes
    199 rdf:type schema:DefinedTerm
    200 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    201 schema:name Biological Sciences
    202 rdf:type schema:DefinedTerm
    203 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    204 schema:name Biochemistry and Cell Biology
    205 rdf:type schema:DefinedTerm
    206 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    207 schema:name Genetics
    208 rdf:type schema:DefinedTerm
    209 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Microbiology
    211 rdf:type schema:DefinedTerm
    212 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    213 schema:name Plant Biology
    214 rdf:type schema:DefinedTerm
    215 sg:journal.1102526 schema:issn 0962-8819
    216 1573-9368
    217 schema:name Transgenic Research
    218 schema:publisher Springer Nature
    219 rdf:type schema:Periodical
    220 sg:person.01066746431.08 schema:affiliation grid-institutes:grid.59056.3f
    221 schema:familyName Jha
    222 schema:givenName Sumita
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066746431.08
    224 rdf:type schema:Person
    225 sg:person.01240506003.46 schema:affiliation grid-institutes:grid.482359.1
    226 schema:familyName Das
    227 schema:givenName Sudripta
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240506003.46
    229 rdf:type schema:Person
    230 sg:person.01300745764.35 schema:affiliation grid-institutes:None
    231 schema:familyName Chaudhuri
    232 schema:givenName Kuntal
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300745764.35
    234 rdf:type schema:Person
    235 sg:person.01361065542.43 schema:affiliation grid-institutes:None
    236 schema:familyName Tepfer
    237 schema:givenName David
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361065542.43
    239 rdf:type schema:Person
    240 sg:person.013660210611.48 schema:affiliation grid-institutes:None
    241 schema:familyName Zalar
    242 schema:givenName Andreja
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660210611.48
    244 rdf:type schema:Person
    245 sg:person.015462147711.38 schema:affiliation grid-institutes:None
    246 schema:familyName Kollmann
    247 schema:givenName Albert
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015462147711.38
    249 rdf:type schema:Person
    250 sg:pub.10.1007/978-1-4684-4493-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021762062
    251 https://doi.org/10.1007/978-1-4684-4493-3_17
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/978-3-642-69338-0_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089504408
    254 https://doi.org/10.1007/978-3-642-69338-0_28
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/bf00019323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000098341
    257 https://doi.org/10.1007/bf00019323
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/bf00025317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040259206
    260 https://doi.org/10.1007/bf00025317
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/bf02712670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003131267
    263 https://doi.org/10.1007/bf02712670
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/bf02889751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024448169
    266 https://doi.org/10.1007/bf02889751
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/bf02901750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016072872
    269 https://doi.org/10.1007/bf02901750
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s00299-004-0904-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029408047
    272 https://doi.org/10.1007/s00299-004-0904-x
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s00299-006-0260-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043975533
    275 https://doi.org/10.1007/s00299-006-0260-0
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s00425-005-0197-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036129913
    278 https://doi.org/10.1007/s00425-005-0197-5
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/s00425-006-0233-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004901132
    281 https://doi.org/10.1007/s00425-006-0233-0
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1007/s004380050688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002982112
    284 https://doi.org/10.1007/s004380050688
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/s11103-004-1521-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046393408
    287 https://doi.org/10.1007/s11103-004-1521-3
    288 rdf:type schema:CreativeWork
    289 grid-institutes:None schema:alternateName Biologie de la Rhizosphère, Institut National de la Recherche Agronomique, 78026, Versailles Cedex, France
    290 Department of Botany, Vivekananda College, 269 Diamond Harbour Road, 700063, Calcutta, India
    291 schema:name Biologie de la Rhizosphère, Institut National de la Recherche Agronomique, 78026, Versailles Cedex, France
    292 Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India
    293 Department of Botany, Vivekananda College, 269 Diamond Harbour Road, 700063, Calcutta, India
    294 rdf:type schema:Organization
    295 grid-institutes:grid.482359.1 schema:alternateName Department of Biotechnology, Tea Research Association, 785008, Tocklai, Jorhat, Assam, India
    296 schema:name Department of Biotechnology, Tea Research Association, 785008, Tocklai, Jorhat, Assam, India
    297 Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India
    298 rdf:type schema:Organization
    299 grid-institutes:grid.59056.3f schema:alternateName Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India
    300 schema:name Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, 700019, Calcutta, India
    301 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...