Impact of a Porosity-Dependent Retention Function on Simulations of Porous Flow View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Peter J. Johnson, George A. Zyvoloski, Philip H. Stauffer

ABSTRACT

Numerical models of flow in unsaturated porous media employ a range of functions to account for capillary effects. In general, these retention functions are assigned at the beginning of the simulation and calculate capillary pressure based on saturation. However, many porous systems involve changes in porosity wherein the retention function should change during the simulation. Model runs which neglect these changes may produce unphysical results such as retention of liquid water in air-filled void spaces. We present a conceptually and numerically simple function that recalculates the retention function at each timestep based on the updated porosity. The new retention function updates the maximum capillary pressure, residual saturation, and maximum saturation prior to applying the saturation fit. We compare results from a fixed (saturation-only) function and the new porosity-dependent retention function through a set of two numerical Gedankenexperiments in salt. The new retention function corrects unphysical model behaviors and causes dramatic changes in simulation behavior relative to the fixed (saturation-only) function, especially when applied to systems dominated by capillary effects. These changes result in large differences in simulated porosity, saturation, and volumetric water content. Water content results obtained using the porosity-dependent retention function are inverted compared to those obtained from saturation-only functions, with high-porosity nodes changing from very wet when using the saturation-only retention function to very dry when using the porosity-dependent retention function. These test cases suggest that dynamic retention functions in changing-porosity systems are important considerations to ensure sensible simulation results. More... »

PAGES

211-232

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11242-018-1188-x

DOI

http://dx.doi.org/10.1007/s11242-018-1188-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109791984


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "GNS Science", 
          "id": "https://www.grid.ac/institutes/grid.15638.39", 
          "name": [
            "EES-16: Computational Earth Science, MS T003, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA", 
            "Department of Geology, The University at Buffalo (SUNY), 14260, Amherst, NY, USA", 
            "GNS Science, Wellington, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "Peter J.", 
        "id": "sg:person.014302715475.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014302715475.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "EES-16: Computational Earth Science, MS T003, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zyvoloski", 
        "givenName": "George A.", 
        "id": "sg:person.01367232764.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367232764.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "EES-16: Computational Earth Science, MS T003, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA", 
            "Department of Geology, The University at Buffalo (SUNY), 14260, Amherst, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stauffer", 
        "givenName": "Philip H.", 
        "id": "sg:person.012503507757.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012503507757.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2003gc000510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005944312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00445-015-0986-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890043", 
          "https://doi.org/10.1007/s00445-015-0986-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gc000616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007546255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015jb012606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007914660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2008.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009365004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gc001013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014366460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gc001013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014366460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003740050452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020565090", 
          "https://doi.org/10.1007/s003740050452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-014-0448-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021214006", 
          "https://doi.org/10.1007/s11242-014-0448-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-014-0379-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021351384", 
          "https://doi.org/10.1007/s11242-014-0379-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/356052a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021358326", 
          "https://doi.org/10.1038/356052a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.earth.27.1.359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021963452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-012-1546-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022580431", 
          "https://doi.org/10.1007/s12665-012-1546-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-014-3576-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023506139", 
          "https://doi.org/10.1007/s12665-014-3576-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7722(02)00158-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025341091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7722(02)00158-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025341091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-016-0689-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026000381", 
          "https://doi.org/10.1007/s11242-016-0689-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-016-0689-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026000381", 
          "https://doi.org/10.1007/s11242-016-0689-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(96)00222-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026916244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(90)90252-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027636053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(90)90252-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027636053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-011-9814-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027873698", 
          "https://doi.org/10.1007/s11242-011-9814-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0011-9164(03)90068-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028542638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-6584.2006.00197.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028571059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/tf9615701200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029667795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01461107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034363821", 
          "https://doi.org/10.1007/bf01461107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geothermics.2007.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035107410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gfl.12035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036318142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2005.11.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036738516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-53813-0.00027-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042958203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-005-2848-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047340822", 
          "https://doi.org/10.1007/s11242-005-2848-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7722(00)00129-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047890000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-26953-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049639648", 
          "https://doi.org/10.1007/3-540-26953-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/nt13-110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051937399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.17.273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.17.273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t09-123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062885828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/jpormedia.v1.i1.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068147900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/jpormedia.v15.i8.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068148446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.2003.53.1.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068211283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/65-01-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068958403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/941152-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068962392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1980.03615995004400050002x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069043312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2004.0120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069053388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2008.0055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069054028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2013.04.0077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069054656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2475/ajs.299.7-9.517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070842313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.09.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091891187"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Numerical models of flow in unsaturated porous media employ a range of functions to account for capillary effects. In general, these retention functions are assigned at the beginning of the simulation and calculate capillary pressure based on saturation. However, many porous systems involve changes in porosity wherein the retention function should change during the simulation. Model runs which neglect these changes may produce unphysical results such as retention of liquid water in air-filled void spaces. We present a conceptually and numerically simple function that recalculates the retention function at each timestep based on the updated porosity. The new retention function updates the maximum capillary pressure, residual saturation, and maximum saturation prior to applying the saturation fit. We compare results from a fixed (saturation-only) function and the new porosity-dependent retention function through a set of two numerical Gedankenexperiments in salt. The new retention function corrects unphysical model behaviors and causes dramatic changes in simulation behavior relative to the fixed (saturation-only) function, especially when applied to systems dominated by capillary effects. These changes result in large differences in simulated porosity, saturation, and volumetric water content. Water content results obtained using the porosity-dependent retention function are inverted compared to those obtained from saturation-only functions, with high-porosity nodes changing from very wet when using the saturation-only retention function to very dry when using the porosity-dependent retention function. These test cases suggest that dynamic retention functions in changing-porosity systems are important considerations to ensure sensible simulation results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11242-018-1188-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050641", 
        "issn": [
          "0169-3913", 
          "1573-1634"
        ], 
        "name": "Transport in Porous Media", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Impact of a Porosity-Dependent Retention Function on Simulations of Porous Flow", 
    "pagination": "211-232", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5085b0be8721381e76a9ec5c8a410cf5d63c4cefd89375f43e1ef310f585290f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11242-018-1188-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109791984"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11242-018-1188-x", 
      "https://app.dimensions.ai/details/publication/pub.1109791984"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47967_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11242-018-1188-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11242-018-1188-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11242-018-1188-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11242-018-1188-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11242-018-1188-x'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11242-018-1188-x schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author N10afdb9f9bf941d6bb4a6498c8f69c41
4 schema:citation sg:pub.10.1007/3-540-26953-3_1
5 sg:pub.10.1007/bf01461107
6 sg:pub.10.1007/s003740050452
7 sg:pub.10.1007/s00445-015-0986-z
8 sg:pub.10.1007/s11242-005-2848-1
9 sg:pub.10.1007/s11242-011-9814-x
10 sg:pub.10.1007/s11242-014-0379-3
11 sg:pub.10.1007/s11242-014-0448-7
12 sg:pub.10.1007/s11242-016-0689-8
13 sg:pub.10.1007/s12665-012-1546-x
14 sg:pub.10.1007/s12665-014-3576-z
15 sg:pub.10.1038/356052a0
16 https://doi.org/10.1002/2015jb012606
17 https://doi.org/10.1016/0017-9310(90)90252-p
18 https://doi.org/10.1016/b978-0-444-53813-0.00027-7
19 https://doi.org/10.1016/j.applthermaleng.2017.09.103
20 https://doi.org/10.1016/j.compgeo.2008.08.001
21 https://doi.org/10.1016/j.geothermics.2007.11.002
22 https://doi.org/10.1016/j.jhydrol.2005.11.049
23 https://doi.org/10.1016/s0011-9164(03)90068-3
24 https://doi.org/10.1016/s0017-9310(96)00222-0
25 https://doi.org/10.1016/s0169-7722(00)00129-7
26 https://doi.org/10.1016/s0169-7722(02)00158-4
27 https://doi.org/10.1029/2003gc000510
28 https://doi.org/10.1029/2003gc000616
29 https://doi.org/10.1029/2005gc001013
30 https://doi.org/10.1039/tf9615701200
31 https://doi.org/10.1103/physrev.17.273
32 https://doi.org/10.1111/gfl.12035
33 https://doi.org/10.1111/j.1745-6584.2006.00197.x
34 https://doi.org/10.1139/t09-123
35 https://doi.org/10.1146/annurev.earth.27.1.359
36 https://doi.org/10.13182/nt13-110
37 https://doi.org/10.1615/jpormedia.v1.i1.60
38 https://doi.org/10.1615/jpormedia.v15.i8.60
39 https://doi.org/10.1680/geot.2003.53.1.105
40 https://doi.org/10.2118/65-01-07
41 https://doi.org/10.2118/941152-g
42 https://doi.org/10.2136/sssaj1980.03615995004400050002x
43 https://doi.org/10.2136/vzj2004.0120
44 https://doi.org/10.2136/vzj2008.0055
45 https://doi.org/10.2136/vzj2013.04.0077
46 https://doi.org/10.2475/ajs.299.7-9.517
47 schema:datePublished 2019-03
48 schema:datePublishedReg 2019-03-01
49 schema:description Numerical models of flow in unsaturated porous media employ a range of functions to account for capillary effects. In general, these retention functions are assigned at the beginning of the simulation and calculate capillary pressure based on saturation. However, many porous systems involve changes in porosity wherein the retention function should change during the simulation. Model runs which neglect these changes may produce unphysical results such as retention of liquid water in air-filled void spaces. We present a conceptually and numerically simple function that recalculates the retention function at each timestep based on the updated porosity. The new retention function updates the maximum capillary pressure, residual saturation, and maximum saturation prior to applying the saturation fit. We compare results from a fixed (saturation-only) function and the new porosity-dependent retention function through a set of two numerical Gedankenexperiments in salt. The new retention function corrects unphysical model behaviors and causes dramatic changes in simulation behavior relative to the fixed (saturation-only) function, especially when applied to systems dominated by capillary effects. These changes result in large differences in simulated porosity, saturation, and volumetric water content. Water content results obtained using the porosity-dependent retention function are inverted compared to those obtained from saturation-only functions, with high-porosity nodes changing from very wet when using the saturation-only retention function to very dry when using the porosity-dependent retention function. These test cases suggest that dynamic retention functions in changing-porosity systems are important considerations to ensure sensible simulation results.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N0702833947584de98ebe599c0b39b4f2
54 Ne2d73387505b4d1ba0b55c107b83a87b
55 sg:journal.1050641
56 schema:name Impact of a Porosity-Dependent Retention Function on Simulations of Porous Flow
57 schema:pagination 211-232
58 schema:productId Na11259549c1246af99ea953429e775c3
59 Naf2616205c2045e1aad86a18b5c96cf8
60 Nbfe834b24ef648488ffab2a64d886b4a
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109791984
62 https://doi.org/10.1007/s11242-018-1188-x
63 schema:sdDatePublished 2019-04-11T09:10
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Na0811eb4d1e44b3891491bae3e237414
66 schema:url https://link.springer.com/10.1007%2Fs11242-018-1188-x
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0166362e2ea84e2f8bc0bc55ea5ca5e3 rdf:first sg:person.01367232764.55
71 rdf:rest N6e1edcdb9b21481fb716fd1d77e4e267
72 N0702833947584de98ebe599c0b39b4f2 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N10afdb9f9bf941d6bb4a6498c8f69c41 rdf:first sg:person.014302715475.27
75 rdf:rest N0166362e2ea84e2f8bc0bc55ea5ca5e3
76 N6e1edcdb9b21481fb716fd1d77e4e267 rdf:first sg:person.012503507757.13
77 rdf:rest rdf:nil
78 Na0811eb4d1e44b3891491bae3e237414 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Na11259549c1246af99ea953429e775c3 schema:name readcube_id
81 schema:value 5085b0be8721381e76a9ec5c8a410cf5d63c4cefd89375f43e1ef310f585290f
82 rdf:type schema:PropertyValue
83 Naf2616205c2045e1aad86a18b5c96cf8 schema:name dimensions_id
84 schema:value pub.1109791984
85 rdf:type schema:PropertyValue
86 Nbfe834b24ef648488ffab2a64d886b4a schema:name doi
87 schema:value 10.1007/s11242-018-1188-x
88 rdf:type schema:PropertyValue
89 Ne2d73387505b4d1ba0b55c107b83a87b schema:volumeNumber 127
90 rdf:type schema:PublicationVolume
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
95 schema:name Environmental Engineering
96 rdf:type schema:DefinedTerm
97 sg:journal.1050641 schema:issn 0169-3913
98 1573-1634
99 schema:name Transport in Porous Media
100 rdf:type schema:Periodical
101 sg:person.012503507757.13 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
102 schema:familyName Stauffer
103 schema:givenName Philip H.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012503507757.13
105 rdf:type schema:Person
106 sg:person.01367232764.55 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
107 schema:familyName Zyvoloski
108 schema:givenName George A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367232764.55
110 rdf:type schema:Person
111 sg:person.014302715475.27 schema:affiliation https://www.grid.ac/institutes/grid.15638.39
112 schema:familyName Johnson
113 schema:givenName Peter J.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014302715475.27
115 rdf:type schema:Person
116 sg:pub.10.1007/3-540-26953-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049639648
117 https://doi.org/10.1007/3-540-26953-3_1
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01461107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034363821
120 https://doi.org/10.1007/bf01461107
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s003740050452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020565090
123 https://doi.org/10.1007/s003740050452
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00445-015-0986-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890043
126 https://doi.org/10.1007/s00445-015-0986-z
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11242-005-2848-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047340822
129 https://doi.org/10.1007/s11242-005-2848-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11242-011-9814-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027873698
132 https://doi.org/10.1007/s11242-011-9814-x
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11242-014-0379-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021351384
135 https://doi.org/10.1007/s11242-014-0379-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11242-014-0448-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021214006
138 https://doi.org/10.1007/s11242-014-0448-7
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11242-016-0689-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026000381
141 https://doi.org/10.1007/s11242-016-0689-8
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s12665-012-1546-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022580431
144 https://doi.org/10.1007/s12665-012-1546-x
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s12665-014-3576-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023506139
147 https://doi.org/10.1007/s12665-014-3576-z
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/356052a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021358326
150 https://doi.org/10.1038/356052a0
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/2015jb012606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007914660
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0017-9310(90)90252-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1027636053
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/b978-0-444-53813-0.00027-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042958203
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.applthermaleng.2017.09.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091891187
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.compgeo.2008.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009365004
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.geothermics.2007.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035107410
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jhydrol.2005.11.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036738516
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0011-9164(03)90068-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028542638
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0017-9310(96)00222-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026916244
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0169-7722(00)00129-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047890000
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0169-7722(02)00158-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025341091
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1029/2003gc000510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005944312
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1029/2003gc000616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007546255
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/2005gc001013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014366460
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1039/tf9615701200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029667795
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrev.17.273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060438330
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1111/gfl.12035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036318142
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1111/j.1745-6584.2006.00197.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028571059
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1139/t09-123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062885828
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1146/annurev.earth.27.1.359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021963452
191 rdf:type schema:CreativeWork
192 https://doi.org/10.13182/nt13-110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051937399
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1615/jpormedia.v1.i1.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068147900
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1615/jpormedia.v15.i8.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068148446
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1680/geot.2003.53.1.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068211283
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2118/65-01-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068958403
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2118/941152-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1068962392
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2136/sssaj1980.03615995004400050002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069043312
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2136/vzj2004.0120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069053388
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2136/vzj2008.0055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069054028
209 rdf:type schema:CreativeWork
210 https://doi.org/10.2136/vzj2013.04.0077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069054656
211 rdf:type schema:CreativeWork
212 https://doi.org/10.2475/ajs.299.7-9.517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070842313
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
215 schema:name EES-16: Computational Earth Science, MS T003, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.15638.39 schema:alternateName GNS Science
218 schema:name Department of Geology, The University at Buffalo (SUNY), 14260, Amherst, NY, USA
219 EES-16: Computational Earth Science, MS T003, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
220 GNS Science, Wellington, New Zealand
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.273335.3 schema:alternateName University at Buffalo, State University of New York
223 schema:name Department of Geology, The University at Buffalo (SUNY), 14260, Amherst, NY, USA
224 EES-16: Computational Earth Science, MS T003, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...