Probabilistic Study of Rainfall-Triggered Instabilities in Randomly Heterogeneous Unsaturated Finite Slopes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Thi Minh Hue Le, Marcelo Sanchez, Domenico Gallipoli, Simon Wheeler

ABSTRACT

Water infiltration destabilises unsaturated soil slopes by reducing matric suction, which produces a decrease of material cohesion. If the porosity of the soil is spatially heterogeneous, a degree of uncertainty is added to the problem as water tends to follow preferential paths and produces an irregular spatial distribution of suction. This study employs the finite element method together with Monte Carlo simulations to quantify the effect of random porosity on the uncertainty of both the factor of safety and failure size of an unsaturated finite slope during and after a rainfall event. The random porosity is modelled using a univariate random field. Results show that, under partially saturated conditions, the random heterogeneity leads to a complex statistical variation of both factor of safety and failure size during the rainfall event. At any given time, the uncertainty about failure size is directly linked to the uncertainty about the position of the wetting front generated by infiltration. Interestingly, the statistical mean of the failed area is smallest when the mean of the factor of safety is lowest. In other words, the slope becomes more likely to fail, but the size of the failure mass tends to be limited. The study also investigates the sensitivity of failure uncertainty to external hydraulic parameters (i.e. initial water table depth, rainfall intensity) and internal soil parameters (i.e. permeability and water retention characteristics). In general, the sensitivity increases when the effect of these parameters on the spatial variation of suction is stronger. More... »

PAGES

1-24

References to SciGraph publications

  • 2008-04. Stochastic Modeling of Progressive Failure in Heterogeneous Soil Slope in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11242-018-1140-0

    DOI

    http://dx.doi.org/10.1007/s11242-018-1140-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106855768


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Norwegian Geotechnical Institute", 
              "id": "https://www.grid.ac/institutes/grid.425894.6", 
              "name": [
                "Norwegian Geotechnical Institute, Sognveien 72, Oslo, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le", 
            "givenName": "Thi Minh Hue", 
            "id": "sg:person.016124676703.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124676703.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Texas A&M University", 
              "id": "https://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, 77843-3136, College Station, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sanchez", 
            "givenName": "Marcelo", 
            "id": "sg:person.012507221136.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507221136.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pau and Pays de l'Adour", 
              "id": "https://www.grid.ac/institutes/grid.5571.6", 
              "name": [
                "Laboratoire SIAME, F\u00e9d\u00e9ration IPRA, Universit\u00e9 de Pau et des Pays de l\u2019Adour, All\u00e9e du Parc Montaury, 64600, Anglet, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gallipoli", 
            "givenName": "Domenico", 
            "id": "sg:person.012350431241.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350431241.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Glasgow", 
              "id": "https://www.grid.ac/institutes/grid.8756.c", 
              "name": [
                "Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wheeler", 
            "givenName": "Simon", 
            "id": "sg:person.010257437611.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257437611.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.compgeo.2009.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006575553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0266-352x(00)00027-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013549408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruc.2011.02.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017214697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/02644409610151575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019135733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9780203968079.ch21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019155725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/t07-016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024491030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nag.413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024768812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1144/qjegh.35.1.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025564222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.probengmech.2006.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037261728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nag.1047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040115285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2013.12.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041216039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0266-352x(01)00019-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042472323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2014.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044098359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2008.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044495730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/t88-055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045125777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/t78-029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047785572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1144/gsl.qjeg.1998.031.p2.04", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048897870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-007-9151-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049574699", 
              "https://doi.org/10.1007/s10706-007-9151-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2013.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050473176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/cgj-2014-0190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051746672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compgeo.2010.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053237971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2008wr006976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053561655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)1090-0241(2004)130:5(507)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057618843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)gt.1943-5606.0000222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057632193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1680/geot.1976.26.3.453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068209673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1680/geot.1986.36.3.453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068210139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1680/geot.2004.54.5.335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068211439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1680/geot.2005.55.1.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068211472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1680/geot.2005.55.1.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068211479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1680/geot.2005.55.2.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068211493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1680/geot.2005.55.2.183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068211499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1680/geot.2007.57.6.537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068211749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2136/sssaj1980.03615995004400050002x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069043312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)gm.1943-5622.0000908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084150107"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "Water infiltration destabilises unsaturated soil slopes by reducing matric suction, which produces a decrease of material cohesion. If the porosity of the soil is spatially heterogeneous, a degree of uncertainty is added to the problem as water tends to follow preferential paths and produces an irregular spatial distribution of suction. This study employs the finite element method together with Monte Carlo simulations to quantify the effect of random porosity on the uncertainty of both the factor of safety and failure size of an unsaturated finite slope during and after a rainfall event. The random porosity is modelled using a univariate random field. Results show that, under partially saturated conditions, the random heterogeneity leads to a complex statistical variation of both factor of safety and failure size during the rainfall event. At any given time, the uncertainty about failure size is directly linked to the uncertainty about the position of the wetting front generated by infiltration. Interestingly, the statistical mean of the failed area is smallest when the mean of the factor of safety is lowest. In other words, the slope becomes more likely to fail, but the size of the failure mass tends to be limited. The study also investigates the sensitivity of failure uncertainty to external hydraulic parameters (i.e. initial water table depth, rainfall intensity) and internal soil parameters (i.e. permeability and water retention characteristics). In general, the sensitivity increases when the effect of these parameters on the spatial variation of suction is stronger.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11242-018-1140-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050641", 
            "issn": [
              "0169-3913", 
              "1573-1634"
            ], 
            "name": "Transport in Porous Media", 
            "type": "Periodical"
          }
        ], 
        "name": "Probabilistic Study of Rainfall-Triggered Instabilities in Randomly Heterogeneous Unsaturated Finite Slopes", 
        "pagination": "1-24", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bdc075d979bcd8664613cde4d1ce003b033d913562b0fc185488571bee39b1be"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11242-018-1140-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106855768"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11242-018-1140-0", 
          "https://app.dimensions.ai/details/publication/pub.1106855768"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000517.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11242-018-1140-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11242-018-1140-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11242-018-1140-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11242-018-1140-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11242-018-1140-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    188 TRIPLES      21 PREDICATES      59 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11242-018-1140-0 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N1f9c0872b7784280b286166d03383952
    4 schema:citation sg:pub.10.1007/s10706-007-9151-6
    5 https://doi.org/10.1002/nag.1047
    6 https://doi.org/10.1002/nag.413
    7 https://doi.org/10.1016/j.compgeo.2009.01.003
    8 https://doi.org/10.1016/j.compgeo.2010.08.001
    9 https://doi.org/10.1016/j.compstruc.2011.02.016
    10 https://doi.org/10.1016/j.enggeo.2008.12.003
    11 https://doi.org/10.1016/j.enggeo.2013.11.005
    12 https://doi.org/10.1016/j.enggeo.2013.12.015
    13 https://doi.org/10.1016/j.enggeo.2014.09.005
    14 https://doi.org/10.1016/j.probengmech.2006.11.003
    15 https://doi.org/10.1016/s0266-352x(00)00027-6
    16 https://doi.org/10.1016/s0266-352x(01)00019-2
    17 https://doi.org/10.1029/2008wr006976
    18 https://doi.org/10.1061/(asce)1090-0241(2004)130:5(507)
    19 https://doi.org/10.1061/(asce)gm.1943-5622.0000908
    20 https://doi.org/10.1061/(asce)gt.1943-5606.0000222
    21 https://doi.org/10.1108/02644409610151575
    22 https://doi.org/10.1139/cgj-2014-0190
    23 https://doi.org/10.1139/t07-016
    24 https://doi.org/10.1139/t78-029
    25 https://doi.org/10.1139/t88-055
    26 https://doi.org/10.1144/gsl.qjeg.1998.031.p2.04
    27 https://doi.org/10.1144/qjegh.35.1.41
    28 https://doi.org/10.1201/9780203968079.ch21
    29 https://doi.org/10.1680/geot.1976.26.3.453
    30 https://doi.org/10.1680/geot.1986.36.3.453
    31 https://doi.org/10.1680/geot.2004.54.5.335
    32 https://doi.org/10.1680/geot.2005.55.1.1
    33 https://doi.org/10.1680/geot.2005.55.1.77
    34 https://doi.org/10.1680/geot.2005.55.2.123
    35 https://doi.org/10.1680/geot.2005.55.2.183
    36 https://doi.org/10.1680/geot.2007.57.6.537
    37 https://doi.org/10.2136/sssaj1980.03615995004400050002x
    38 schema:datePublished 2019-01
    39 schema:datePublishedReg 2019-01-01
    40 schema:description Water infiltration destabilises unsaturated soil slopes by reducing matric suction, which produces a decrease of material cohesion. If the porosity of the soil is spatially heterogeneous, a degree of uncertainty is added to the problem as water tends to follow preferential paths and produces an irregular spatial distribution of suction. This study employs the finite element method together with Monte Carlo simulations to quantify the effect of random porosity on the uncertainty of both the factor of safety and failure size of an unsaturated finite slope during and after a rainfall event. The random porosity is modelled using a univariate random field. Results show that, under partially saturated conditions, the random heterogeneity leads to a complex statistical variation of both factor of safety and failure size during the rainfall event. At any given time, the uncertainty about failure size is directly linked to the uncertainty about the position of the wetting front generated by infiltration. Interestingly, the statistical mean of the failed area is smallest when the mean of the factor of safety is lowest. In other words, the slope becomes more likely to fail, but the size of the failure mass tends to be limited. The study also investigates the sensitivity of failure uncertainty to external hydraulic parameters (i.e. initial water table depth, rainfall intensity) and internal soil parameters (i.e. permeability and water retention characteristics). In general, the sensitivity increases when the effect of these parameters on the spatial variation of suction is stronger.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf sg:journal.1050641
    45 schema:name Probabilistic Study of Rainfall-Triggered Instabilities in Randomly Heterogeneous Unsaturated Finite Slopes
    46 schema:pagination 1-24
    47 schema:productId N557031af89dc477e9459763b5440434e
    48 N98efb20ca4ca4e66b7d6bed84d81e087
    49 Ncf519bd7c3d746adb5a8762e678a0559
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106855768
    51 https://doi.org/10.1007/s11242-018-1140-0
    52 schema:sdDatePublished 2019-04-10T20:48
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N72dcc9bd8fe24113a592745bf9067a7f
    55 schema:url http://link.springer.com/10.1007%2Fs11242-018-1140-0
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N1f9c0872b7784280b286166d03383952 rdf:first sg:person.016124676703.42
    60 rdf:rest Nbf9e3d64787b4d10a95bc598c0560402
    61 N2a666b4fa0024167a4686266755d7978 rdf:first sg:person.012350431241.07
    62 rdf:rest N885c2cc58c0c461e914947f690287b8d
    63 N557031af89dc477e9459763b5440434e schema:name readcube_id
    64 schema:value bdc075d979bcd8664613cde4d1ce003b033d913562b0fc185488571bee39b1be
    65 rdf:type schema:PropertyValue
    66 N72dcc9bd8fe24113a592745bf9067a7f schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N885c2cc58c0c461e914947f690287b8d rdf:first sg:person.010257437611.52
    69 rdf:rest rdf:nil
    70 N98efb20ca4ca4e66b7d6bed84d81e087 schema:name dimensions_id
    71 schema:value pub.1106855768
    72 rdf:type schema:PropertyValue
    73 Nbf9e3d64787b4d10a95bc598c0560402 rdf:first sg:person.012507221136.03
    74 rdf:rest N2a666b4fa0024167a4686266755d7978
    75 Ncf519bd7c3d746adb5a8762e678a0559 schema:name doi
    76 schema:value 10.1007/s11242-018-1140-0
    77 rdf:type schema:PropertyValue
    78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Mathematical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Statistics
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1050641 schema:issn 0169-3913
    85 1573-1634
    86 schema:name Transport in Porous Media
    87 rdf:type schema:Periodical
    88 sg:person.010257437611.52 schema:affiliation https://www.grid.ac/institutes/grid.8756.c
    89 schema:familyName Wheeler
    90 schema:givenName Simon
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257437611.52
    92 rdf:type schema:Person
    93 sg:person.012350431241.07 schema:affiliation https://www.grid.ac/institutes/grid.5571.6
    94 schema:familyName Gallipoli
    95 schema:givenName Domenico
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350431241.07
    97 rdf:type schema:Person
    98 sg:person.012507221136.03 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
    99 schema:familyName Sanchez
    100 schema:givenName Marcelo
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507221136.03
    102 rdf:type schema:Person
    103 sg:person.016124676703.42 schema:affiliation https://www.grid.ac/institutes/grid.425894.6
    104 schema:familyName Le
    105 schema:givenName Thi Minh Hue
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124676703.42
    107 rdf:type schema:Person
    108 sg:pub.10.1007/s10706-007-9151-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049574699
    109 https://doi.org/10.1007/s10706-007-9151-6
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1002/nag.1047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040115285
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1002/nag.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024768812
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.compgeo.2009.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006575553
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.compgeo.2010.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053237971
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.compstruc.2011.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017214697
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.enggeo.2008.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044495730
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.enggeo.2013.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050473176
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.enggeo.2013.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041216039
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.enggeo.2014.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044098359
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.probengmech.2006.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037261728
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/s0266-352x(00)00027-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013549408
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/s0266-352x(01)00019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042472323
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1029/2008wr006976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053561655
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1061/(asce)1090-0241(2004)130:5(507) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618843
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1061/(asce)gm.1943-5622.0000908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084150107
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1061/(asce)gt.1943-5606.0000222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057632193
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1108/02644409610151575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019135733
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1139/cgj-2014-0190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051746672
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1139/t07-016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024491030
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1139/t78-029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047785572
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1139/t88-055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045125777
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1144/gsl.qjeg.1998.031.p2.04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048897870
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1144/qjegh.35.1.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025564222
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1201/9780203968079.ch21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019155725
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1680/geot.1976.26.3.453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209673
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1680/geot.1986.36.3.453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068210139
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1680/geot.2004.54.5.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068211439
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1680/geot.2005.55.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068211472
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1680/geot.2005.55.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068211479
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1680/geot.2005.55.2.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068211493
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1680/geot.2005.55.2.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068211499
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1680/geot.2007.57.6.537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068211749
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.2136/sssaj1980.03615995004400050002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069043312
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
    178 schema:name Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, 77843-3136, College Station, TX, USA
    179 rdf:type schema:Organization
    180 https://www.grid.ac/institutes/grid.425894.6 schema:alternateName Norwegian Geotechnical Institute
    181 schema:name Norwegian Geotechnical Institute, Sognveien 72, Oslo, Norway
    182 rdf:type schema:Organization
    183 https://www.grid.ac/institutes/grid.5571.6 schema:alternateName University of Pau and Pays de l'Adour
    184 schema:name Laboratoire SIAME, Fédération IPRA, Université de Pau et des Pays de l’Adour, Allée du Parc Montaury, 64600, Anglet, France
    185 rdf:type schema:Organization
    186 https://www.grid.ac/institutes/grid.8756.c schema:alternateName University of Glasgow
    187 schema:name Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
    188 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...