An Improved Method for Reconstructing the Digital Core Model of Heterogeneous Porous Media View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01

AUTHORS

Lili Ji, Mian Lin, Wenbin Jiang, Chenjie Wu

ABSTRACT

The heterogeneous pore space of porous media strongly affects the storage and migration of oil and gas in the reservoir. In this paper, the cross-correlation-based simulation (CCSIM) is combined with the three-step sample method to reconstruct stochastically 3D models of the heterogeneous porous media. Moreover, the two-point and multiple-point connectivity probability functions are used as vertical constraint conditions to select the boundary points of pore and matrix, respectively. The heterogeneities of pore spaces of four rock samples are investigated, and then our methods are tested on the four samples. Quantitative comparison is made by computing various statistical and petrophysical properties for the original samples, as well as the reconstructed model. It was found that the results from CCSIM-TSS are obviously better than that from CCSIM. Finally, the analysis of the distance (ANODI) was used to measure of the variability between the realizations of the four rock samples. The results demonstrated that the results from CCSIM-TSSmp are better than that from CCSIM-TSStp as the complexity of connectivity and heterogeneities of pore spaces increase. More... »

PAGES

389-406

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11242-017-0970-5

DOI

http://dx.doi.org/10.1007/s11242-017-0970-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092901083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Lili", 
        "id": "sg:person.010130700275.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130700275.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Mian", 
        "id": "sg:person.0755311125.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755311125.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Wenbin", 
        "id": "sg:person.010172675321.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172675321.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Chenjie", 
        "id": "sg:person.015264126315.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015264126315.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11004-013-9489-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002754345", 
          "https://doi.org/10.1007/s11004-013-9489-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-012-0028-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006780342", 
          "https://doi.org/10.1007/s11242-012-0028-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-012-0028-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006780342", 
          "https://doi.org/10.1007/s11242-012-0028-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2013.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008435564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-4105(03)00062-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012594316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-4105(03)00062-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012594316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(84)90481-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016568585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015031122338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019719993", 
          "https://doi.org/10.1023/a:1015031122338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014009426274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022589901", 
          "https://doi.org/10.1023/a:1014009426274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11004-013-9482-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038974912", 
          "https://doi.org/10.1007/s11004-013-9482-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-015-0570-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039629314", 
          "https://doi.org/10.1007/s11242-015-0570-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(99)00248-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040964592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2016.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042721937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015wr017806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044390190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:matg.0000011585.73414.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044802302", 
          "https://doi.org/10.1023/b:matg.0000011585.73414.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02768903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049726614", 
          "https://doi.org/10.1007/bf02768903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-012-9287-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050574504", 
          "https://doi.org/10.1007/s10596-012-9287-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2011.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050769864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.1959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.1959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.061307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060726800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.061307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060726800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.061303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.061303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.056116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.056116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.013308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.013308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/05270909001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064922381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/99-03-01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068963419"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "The heterogeneous pore space of porous media strongly affects the storage and migration of oil and gas in the reservoir. In this paper, the cross-correlation-based simulation (CCSIM) is combined with the three-step sample method to reconstruct stochastically 3D models of the heterogeneous porous media. Moreover, the two-point and multiple-point connectivity probability functions are used as vertical constraint conditions to select the boundary points of pore and matrix, respectively. The heterogeneities of pore spaces of four rock samples are investigated, and then our methods are tested on the four samples. Quantitative comparison is made by computing various statistical and petrophysical properties for the original samples, as well as the reconstructed model. It was found that the results from CCSIM-TSS are obviously better than that from CCSIM. Finally, the analysis of the distance (ANODI) was used to measure of the variability between the realizations of the four rock samples. The results demonstrated that the results from CCSIM-TSSmp are better than that from CCSIM-TSStp as the complexity of connectivity and heterogeneities of pore spaces increase.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11242-017-0970-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050641", 
        "issn": [
          "0169-3913", 
          "1573-1634"
        ], 
        "name": "Transport in Porous Media", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "121"
      }
    ], 
    "name": "An Improved Method for Reconstructing the Digital Core Model of Heterogeneous Porous Media", 
    "pagination": "389-406", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7bf2dd43288a17bf8cb5e6f659415f6726bcbe52ff4d02c536d9875357a985d1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11242-017-0970-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092901083"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11242-017-0970-5", 
      "https://app.dimensions.ai/details/publication/pub.1092901083"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11242-017-0970-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11242-017-0970-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11242-017-0970-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11242-017-0970-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11242-017-0970-5'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11242-017-0970-5 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author Nd91d2897482d4e88ae4e2586b80cb65d
4 schema:citation sg:pub.10.1007/bf02768903
5 sg:pub.10.1007/s10596-012-9287-1
6 sg:pub.10.1007/s11004-013-9482-1
7 sg:pub.10.1007/s11004-013-9489-7
8 sg:pub.10.1007/s11242-012-0028-7
9 sg:pub.10.1007/s11242-015-0570-1
10 sg:pub.10.1023/a:1014009426274
11 sg:pub.10.1023/a:1015031122338
12 sg:pub.10.1023/b:matg.0000011585.73414.35
13 https://doi.org/10.1002/2015wr017806
14 https://doi.org/10.1016/0021-9797(84)90481-8
15 https://doi.org/10.1016/j.advwatres.2011.06.003
16 https://doi.org/10.1016/j.advwatres.2016.01.008
17 https://doi.org/10.1016/j.petrol.2013.10.005
18 https://doi.org/10.1016/s0378-4371(99)00248-4
19 https://doi.org/10.1016/s0920-4105(03)00062-7
20 https://doi.org/10.1103/physreva.46.2004
21 https://doi.org/10.1103/physreve.55.1959
22 https://doi.org/10.1103/physreve.63.061307
23 https://doi.org/10.1103/physreve.75.061303
24 https://doi.org/10.1103/physreve.83.056116
25 https://doi.org/10.1103/physreve.91.013308
26 https://doi.org/10.1306/05270909001
27 https://doi.org/10.2118/99-03-01
28 schema:datePublished 2018-01
29 schema:datePublishedReg 2018-01-01
30 schema:description The heterogeneous pore space of porous media strongly affects the storage and migration of oil and gas in the reservoir. In this paper, the cross-correlation-based simulation (CCSIM) is combined with the three-step sample method to reconstruct stochastically 3D models of the heterogeneous porous media. Moreover, the two-point and multiple-point connectivity probability functions are used as vertical constraint conditions to select the boundary points of pore and matrix, respectively. The heterogeneities of pore spaces of four rock samples are investigated, and then our methods are tested on the four samples. Quantitative comparison is made by computing various statistical and petrophysical properties for the original samples, as well as the reconstructed model. It was found that the results from CCSIM-TSS are obviously better than that from CCSIM. Finally, the analysis of the distance (ANODI) was used to measure of the variability between the realizations of the four rock samples. The results demonstrated that the results from CCSIM-TSSmp are better than that from CCSIM-TSStp as the complexity of connectivity and heterogeneities of pore spaces increase.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N3ff416c248ff4baca72b69b45c592217
35 Nc9ea04d2a0c5424ea1eb3bf7b2ebe0a6
36 sg:journal.1050641
37 schema:name An Improved Method for Reconstructing the Digital Core Model of Heterogeneous Porous Media
38 schema:pagination 389-406
39 schema:productId N5881725303c646d7a5ae12820dd14bcd
40 Ne4ead1f47993435380c4a1d30a024e27
41 Nf12a0d0083ff4530a79994ef10193cd4
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092901083
43 https://doi.org/10.1007/s11242-017-0970-5
44 schema:sdDatePublished 2019-04-10T13:06
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N7d5bc9633c2d495daab16f11d5346355
47 schema:url http://link.springer.com/10.1007/s11242-017-0970-5
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N06ff9400e08e4caea622af8eb0c5c53f rdf:first sg:person.010172675321.99
52 rdf:rest Ne3cbe81b417342669bfbdc3b5b4694c9
53 N115f88124cf84f08b118ff7699001fae rdf:first sg:person.0755311125.57
54 rdf:rest N06ff9400e08e4caea622af8eb0c5c53f
55 N3ff416c248ff4baca72b69b45c592217 schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 N5881725303c646d7a5ae12820dd14bcd schema:name readcube_id
58 schema:value 7bf2dd43288a17bf8cb5e6f659415f6726bcbe52ff4d02c536d9875357a985d1
59 rdf:type schema:PropertyValue
60 N7d5bc9633c2d495daab16f11d5346355 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nc9ea04d2a0c5424ea1eb3bf7b2ebe0a6 schema:volumeNumber 121
63 rdf:type schema:PublicationVolume
64 Nd91d2897482d4e88ae4e2586b80cb65d rdf:first sg:person.010130700275.34
65 rdf:rest N115f88124cf84f08b118ff7699001fae
66 Ne3cbe81b417342669bfbdc3b5b4694c9 rdf:first sg:person.015264126315.70
67 rdf:rest rdf:nil
68 Ne4ead1f47993435380c4a1d30a024e27 schema:name dimensions_id
69 schema:value pub.1092901083
70 rdf:type schema:PropertyValue
71 Nf12a0d0083ff4530a79994ef10193cd4 schema:name doi
72 schema:value 10.1007/s11242-017-0970-5
73 rdf:type schema:PropertyValue
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
78 schema:name Resources Engineering and Extractive Metallurgy
79 rdf:type schema:DefinedTerm
80 sg:journal.1050641 schema:issn 0169-3913
81 1573-1634
82 schema:name Transport in Porous Media
83 rdf:type schema:Periodical
84 sg:person.010130700275.34 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
85 schema:familyName Ji
86 schema:givenName Lili
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130700275.34
88 rdf:type schema:Person
89 sg:person.010172675321.99 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
90 schema:familyName Jiang
91 schema:givenName Wenbin
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172675321.99
93 rdf:type schema:Person
94 sg:person.015264126315.70 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
95 schema:familyName Wu
96 schema:givenName Chenjie
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015264126315.70
98 rdf:type schema:Person
99 sg:person.0755311125.57 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
100 schema:familyName Lin
101 schema:givenName Mian
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755311125.57
103 rdf:type schema:Person
104 sg:pub.10.1007/bf02768903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049726614
105 https://doi.org/10.1007/bf02768903
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10596-012-9287-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050574504
108 https://doi.org/10.1007/s10596-012-9287-1
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11004-013-9482-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038974912
111 https://doi.org/10.1007/s11004-013-9482-1
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11004-013-9489-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002754345
114 https://doi.org/10.1007/s11004-013-9489-7
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11242-012-0028-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006780342
117 https://doi.org/10.1007/s11242-012-0028-7
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11242-015-0570-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039629314
120 https://doi.org/10.1007/s11242-015-0570-1
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1014009426274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022589901
123 https://doi.org/10.1023/a:1014009426274
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1015031122338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019719993
126 https://doi.org/10.1023/a:1015031122338
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/b:matg.0000011585.73414.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044802302
129 https://doi.org/10.1023/b:matg.0000011585.73414.35
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/2015wr017806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044390190
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0021-9797(84)90481-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016568585
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.advwatres.2011.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050769864
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.advwatres.2016.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042721937
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.petrol.2013.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008435564
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0378-4371(99)00248-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040964592
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0920-4105(03)00062-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012594316
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreva.46.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485942
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreve.55.1959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720447
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreve.63.061307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060726800
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physreve.75.061303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736023
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physreve.83.056116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741876
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physreve.91.013308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060747092
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1306/05270909001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064922381
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2118/99-03-01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068963419
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
162 schema:name Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
163 University of Chinese Academy of Sciences, 100190, Beijing, China
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.458484.1 schema:alternateName Institute of Mechanics
166 schema:name Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...