Parameter Determination Using 3D FIB-SEM Images for Development of Effective Model of Shale Gas Flow in Nanoscale Pore Clusters View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03

AUTHORS

Wenbin Jiang, Mian Lin, Zhixing Yi, Haishan Li, Songtao Wu

ABSTRACT

A large amount of nano-pores exists in pore clusters in shale gas reservoirs. In addition to the multiple transport regimes that occur on the nanoscale, the pore space is another major factor that significantly affects the shale gas recoverability. An investigation of the pore-scale shale gas flow is therefore important, and the results can be used to develop an effective cluster-scale pore network model for the convenient examination of the process efficiency. Focused ion beam scanning electron microscope imaging, which enables the acquisition of nanometre-resolution images that facilitate nano-pore identification, was used in conjunction with a high-precision pore network extraction algorithm to generate the equivalent pore network for the simulation of Darcy and shale gas flows through the pores. The characteristic parameters of the pores and the gas transport features were determined and analysed to obtain a deeper understanding of shale gas flow through nanoscale pore clusters, such as the importance of the throat flux–radius distribution and the variation of the tortuosity with pressure. The best parameter scheme for the proposed effective model of shale gas flow was selected out of three derived schemes based on the pore-scale prediction results. The model is applicable to pore-scale to cluster-scale shale gas flows and can be used to avoid the multiple-solution problems in the study of gas flows. It affords a foundation for further study to develop models for shale gas flows on larger scales. More... »

PAGES

5-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11242-016-0817-5

DOI

http://dx.doi.org/10.1007/s11242-016-0817-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046303721


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Wenbin", 
        "id": "sg:person.010172675321.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172675321.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Mian", 
        "id": "sg:person.0755311125.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755311125.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yi", 
        "givenName": "Zhixing", 
        "id": "sg:person.014214577012.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014214577012.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.458484.1", 
          "name": [
            "Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Haishan", 
        "id": "sg:person.015607540012.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015607540012.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Songtao", 
        "id": "sg:person.016661050306.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661050306.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/aic.690470206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001142226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2005.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003332329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-013-0191-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008715688", 
          "https://doi.org/10.1007/s11242-013-0191-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-009-9432-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010840932", 
          "https://doi.org/10.1007/s11242-009-9432-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-009-9432-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010840932", 
          "https://doi.org/10.1007/s11242-009-9432-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-5861(99)00118-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011099602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015364217", 
          "https://doi.org/10.1038/srep04843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018466027", 
          "https://doi.org/10.1038/srep08089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2015.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019551582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006wr005780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022653689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2014.06.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023140208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ggge.20254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023268694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2015.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029139233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2014.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034739136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-015-0570-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039629314", 
          "https://doi.org/10.1007/s11242-015-0570-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2016.05.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042257248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2016.05.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042257248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95jb03039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044397784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsl.sp.1997.122.01.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045705768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2016.04.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046130572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4711147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047267485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2013.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052003676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2012.424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053809436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2012.424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053809436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054075758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054075758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1559936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057720151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4930006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058095827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.036307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.036307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.2943641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062173268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/07-10-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068944252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/09-08-16-da", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068945296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/146422-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068950608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/146821-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068950632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/170830-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068952534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/107954-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096924598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/155756-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096964118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/164840-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096985069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/167179-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097017612"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "A large amount of nano-pores exists in pore clusters in shale gas reservoirs. In addition to the multiple transport regimes that occur on the nanoscale, the pore space is another major factor that significantly affects the shale gas recoverability. An investigation of the pore-scale shale gas flow is therefore important, and the results can be used to develop an effective cluster-scale pore network model for the convenient examination of the process efficiency. Focused ion beam scanning electron microscope imaging, which enables the acquisition of nanometre-resolution images that facilitate nano-pore identification, was used in conjunction with a high-precision pore network extraction algorithm to generate the equivalent pore network for the simulation of Darcy and shale gas flows through the pores. The characteristic parameters of the pores and the gas transport features were determined and analysed to obtain a deeper understanding of shale gas flow through nanoscale pore clusters, such as the importance of the throat flux\u2013radius distribution and the variation of the tortuosity with pressure. The best parameter scheme for the proposed effective model of shale gas flow was selected out of three derived schemes based on the pore-scale prediction results. The model is applicable to pore-scale to cluster-scale shale gas flows and can be used to avoid the multiple-solution problems in the study of gas flows. It affords a foundation for further study to develop models for shale gas flows on larger scales.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11242-016-0817-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1050641", 
        "issn": [
          "0169-3913", 
          "1573-1634"
        ], 
        "name": "Transport in Porous Media", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "117"
      }
    ], 
    "name": "Parameter Determination Using 3D FIB-SEM Images for Development of Effective Model of Shale Gas Flow in Nanoscale Pore Clusters", 
    "pagination": "5-25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dc920b5877a81cb6a3eef3b310a7c634308d257e41ad5f8f4f5b27aa1d482770"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11242-016-0817-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046303721"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11242-016-0817-5", 
      "https://app.dimensions.ai/details/publication/pub.1046303721"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113679_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11242-016-0817-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11242-016-0817-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11242-016-0817-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11242-016-0817-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11242-016-0817-5'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11242-016-0817-5 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nc0a78c12309e4e73b893001947d6b9e4
4 schema:citation sg:pub.10.1007/s11242-009-9432-z
5 sg:pub.10.1007/s11242-013-0191-5
6 sg:pub.10.1007/s11242-015-0570-1
7 sg:pub.10.1038/nmeth.2089
8 sg:pub.10.1038/srep04843
9 sg:pub.10.1038/srep08089
10 https://doi.org/10.1002/aic.690470206
11 https://doi.org/10.1002/ggge.20254
12 https://doi.org/10.1016/j.apsusc.2014.06.152
13 https://doi.org/10.1016/j.coal.2015.02.004
14 https://doi.org/10.1016/j.coal.2015.05.010
15 https://doi.org/10.1016/j.compfluid.2005.03.008
16 https://doi.org/10.1016/j.fuel.2013.08.041
17 https://doi.org/10.1016/j.fuel.2014.02.001
18 https://doi.org/10.1016/j.fuel.2016.04.133
19 https://doi.org/10.1016/j.jngse.2016.05.068
20 https://doi.org/10.1016/s0920-5861(99)00118-2
21 https://doi.org/10.1017/jfm.2012.424
22 https://doi.org/10.1017/jfm.2014.519
23 https://doi.org/10.1029/2006wr005780
24 https://doi.org/10.1029/95jb03039
25 https://doi.org/10.1063/1.1559936
26 https://doi.org/10.1063/1.4711147
27 https://doi.org/10.1063/1.4930006
28 https://doi.org/10.1103/physreve.70.066135
29 https://doi.org/10.1103/physreve.80.036307
30 https://doi.org/10.1116/1.2943641
31 https://doi.org/10.1144/gsl.sp.1997.122.01.18
32 https://doi.org/10.2118/07-10-06
33 https://doi.org/10.2118/09-08-16-da
34 https://doi.org/10.2118/107954-ms
35 https://doi.org/10.2118/146422-pa
36 https://doi.org/10.2118/146821-pa
37 https://doi.org/10.2118/155756-ms
38 https://doi.org/10.2118/164840-ms
39 https://doi.org/10.2118/167179-ms
40 https://doi.org/10.2118/170830-pa
41 schema:datePublished 2017-03
42 schema:datePublishedReg 2017-03-01
43 schema:description A large amount of nano-pores exists in pore clusters in shale gas reservoirs. In addition to the multiple transport regimes that occur on the nanoscale, the pore space is another major factor that significantly affects the shale gas recoverability. An investigation of the pore-scale shale gas flow is therefore important, and the results can be used to develop an effective cluster-scale pore network model for the convenient examination of the process efficiency. Focused ion beam scanning electron microscope imaging, which enables the acquisition of nanometre-resolution images that facilitate nano-pore identification, was used in conjunction with a high-precision pore network extraction algorithm to generate the equivalent pore network for the simulation of Darcy and shale gas flows through the pores. The characteristic parameters of the pores and the gas transport features were determined and analysed to obtain a deeper understanding of shale gas flow through nanoscale pore clusters, such as the importance of the throat flux–radius distribution and the variation of the tortuosity with pressure. The best parameter scheme for the proposed effective model of shale gas flow was selected out of three derived schemes based on the pore-scale prediction results. The model is applicable to pore-scale to cluster-scale shale gas flows and can be used to avoid the multiple-solution problems in the study of gas flows. It affords a foundation for further study to develop models for shale gas flows on larger scales.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf Nba014d3bc9444e96aa5c44a860beddce
48 Nbfcc4756aa4048b193e4262fa5f140a1
49 sg:journal.1050641
50 schema:name Parameter Determination Using 3D FIB-SEM Images for Development of Effective Model of Shale Gas Flow in Nanoscale Pore Clusters
51 schema:pagination 5-25
52 schema:productId N5eb9110a049c428e99f7b01d3068c2ee
53 Nb25d0433132746f981587c8eba2cc20b
54 Nc982f10ab74c4518bb8d499f5a73aae2
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046303721
56 https://doi.org/10.1007/s11242-016-0817-5
57 schema:sdDatePublished 2019-04-11T10:39
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N63dbc8d8a4344a28a4d9f3fa3d62d9bd
60 schema:url https://link.springer.com/10.1007%2Fs11242-016-0817-5
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N4fc7a1e87ad243f0809451d7c0205868 rdf:first sg:person.0755311125.57
65 rdf:rest Nefaea1d27214466c9651c2c5ea794ebe
66 N5eb9110a049c428e99f7b01d3068c2ee schema:name doi
67 schema:value 10.1007/s11242-016-0817-5
68 rdf:type schema:PropertyValue
69 N63dbc8d8a4344a28a4d9f3fa3d62d9bd schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N93aacf3ddf2e4555beb8590b44532fa9 rdf:first sg:person.016661050306.64
72 rdf:rest rdf:nil
73 Nb25d0433132746f981587c8eba2cc20b schema:name dimensions_id
74 schema:value pub.1046303721
75 rdf:type schema:PropertyValue
76 Nba014d3bc9444e96aa5c44a860beddce schema:volumeNumber 117
77 rdf:type schema:PublicationVolume
78 Nbfcc4756aa4048b193e4262fa5f140a1 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 Nc0a78c12309e4e73b893001947d6b9e4 rdf:first sg:person.010172675321.99
81 rdf:rest N4fc7a1e87ad243f0809451d7c0205868
82 Nc982f10ab74c4518bb8d499f5a73aae2 schema:name readcube_id
83 schema:value dc920b5877a81cb6a3eef3b310a7c634308d257e41ad5f8f4f5b27aa1d482770
84 rdf:type schema:PropertyValue
85 Ne4e923fc1cf843db9ad4d2f90ba2a1d6 rdf:first sg:person.015607540012.14
86 rdf:rest N93aacf3ddf2e4555beb8590b44532fa9
87 Nefaea1d27214466c9651c2c5ea794ebe rdf:first sg:person.014214577012.38
88 rdf:rest Ne4e923fc1cf843db9ad4d2f90ba2a1d6
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
93 schema:name Other Physical Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1050641 schema:issn 0169-3913
96 1573-1634
97 schema:name Transport in Porous Media
98 rdf:type schema:Periodical
99 sg:person.010172675321.99 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
100 schema:familyName Jiang
101 schema:givenName Wenbin
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172675321.99
103 rdf:type schema:Person
104 sg:person.014214577012.38 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
105 schema:familyName Yi
106 schema:givenName Zhixing
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014214577012.38
108 rdf:type schema:Person
109 sg:person.015607540012.14 schema:affiliation https://www.grid.ac/institutes/grid.458484.1
110 schema:familyName Li
111 schema:givenName Haishan
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015607540012.14
113 rdf:type schema:Person
114 sg:person.016661050306.64 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
115 schema:familyName Wu
116 schema:givenName Songtao
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661050306.64
118 rdf:type schema:Person
119 sg:person.0755311125.57 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
120 schema:familyName Lin
121 schema:givenName Mian
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755311125.57
123 rdf:type schema:Person
124 sg:pub.10.1007/s11242-009-9432-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010840932
125 https://doi.org/10.1007/s11242-009-9432-z
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11242-013-0191-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008715688
128 https://doi.org/10.1007/s11242-013-0191-5
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11242-015-0570-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039629314
131 https://doi.org/10.1007/s11242-015-0570-1
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
134 https://doi.org/10.1038/nmeth.2089
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/srep04843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015364217
137 https://doi.org/10.1038/srep04843
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/srep08089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018466027
140 https://doi.org/10.1038/srep08089
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/aic.690470206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001142226
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/ggge.20254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023268694
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.apsusc.2014.06.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023140208
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.coal.2015.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029139233
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.coal.2015.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019551582
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.compfluid.2005.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003332329
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.fuel.2013.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052003676
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.fuel.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034739136
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.fuel.2016.04.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046130572
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jngse.2016.05.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042257248
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0920-5861(99)00118-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011099602
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1017/jfm.2012.424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053809436
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1017/jfm.2014.519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054075758
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1029/2006wr005780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022653689
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1029/95jb03039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044397784
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.1559936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057720151
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.4711147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047267485
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.4930006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058095827
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.70.066135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060732327
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreve.80.036307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739530
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1116/1.2943641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062173268
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1144/gsl.sp.1997.122.01.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045705768
185 rdf:type schema:CreativeWork
186 https://doi.org/10.2118/07-10-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068944252
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2118/09-08-16-da schema:sameAs https://app.dimensions.ai/details/publication/pub.1068945296
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2118/107954-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096924598
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2118/146422-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068950608
193 rdf:type schema:CreativeWork
194 https://doi.org/10.2118/146821-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068950632
195 rdf:type schema:CreativeWork
196 https://doi.org/10.2118/155756-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096964118
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2118/164840-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096985069
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2118/167179-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1097017612
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2118/170830-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068952534
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
205 schema:name Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
206 University of Chinese Academy of Sciences, 100190, Beijing, China
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.418531.a schema:alternateName Sinopec (China)
209 schema:name Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, China
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.458484.1 schema:alternateName Institute of Mechanics
212 schema:name Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...