Using an Ensemble Kalman Filter Method to Calibrate Parameters and Update Soluble Chemical Transfer From Soil to Surface Runoff View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09-15

AUTHORS

Ju-Xiu Tong, Bill X. Hu, Jin-Zhong Yang

ABSTRACT

A data assimilation method, an ensemble Kalman filter (EnKF), is applied to simultaneously calibrate parameters and update prediction for soluble chemical transfer from soil into surface runoff. The soluble chemical transfer is calculated using a two-layer analytical model with constant parameters, hmix (water depth of the soil-mixing layer), α and γ (surface runoff and infiltration-related incomplete mixing parameters). The model is presented as the forward model. Based on laboratory experimental results, the measured chemical concentrations in the surface runoff are assimilated into the calculation through the developed EnKF method to calibrate the parameters and update chemical concentration in the runoff. In comparison with the calculation without data assimilation method, the updated solute concentration results are much closer to the experimental observed data and the calibrated parameters, hmix, α and γ, are no longer constants, but time dependent, which are physically reasonable. The study results indicate that the EnKF method significantly improves the prediction for solute chemical transfer from soil into surface runoff, whereas the extended Kalman filter will not, and the ensemble size of 100 will be suitable for the chemical concentration calculation based on our trial. More... »

PAGES

133-152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11242-011-9837-3

DOI

http://dx.doi.org/10.1007/s11242-011-9837-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013929186


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "China University of Geosciences, 29 Xueyuan Road, 100083, Beijing, People\u2019s Republic of China", 
            "Department of Earth, Ocean and Atmospheric Sciences/Geological Sciences, Florida State University, 108 Carraway Building, 32306, Tallahassee, FL, USA", 
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Ju-Xiu", 
        "id": "sg:person.010314752347.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Earth, Ocean and Atmospheric Sciences/Geological Sciences, Florida State University, 108 Carraway Building, 32306, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "China University of Geosciences, 29 Xueyuan Road, 100083, Beijing, People\u2019s Republic of China", 
            "Department of Earth, Ocean and Atmospheric Sciences/Geological Sciences, Florida State University, 108 Carraway Building, 32306, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bill X.", 
        "id": "sg:person.012556140447.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jin-Zhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00477-008-0289-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029417657", 
          "https://doi.org/10.1007/s00477-008-0289-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10236-003-0036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053511041", 
          "https://doi.org/10.1007/s10236-003-0036-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09-15", 
    "datePublishedReg": "2011-09-15", 
    "description": "A data assimilation method, an ensemble Kalman filter (EnKF), is applied to simultaneously calibrate parameters and update prediction for soluble chemical transfer from soil into surface runoff. The soluble chemical transfer is calculated using a two-layer analytical model with constant parameters, hmix (water depth of the soil-mixing layer), \u03b1 and \u03b3 (surface runoff and infiltration-related incomplete mixing parameters). The model is presented as the forward model. Based on laboratory experimental results, the measured chemical concentrations in the surface runoff are assimilated into the calculation through the developed EnKF method to calibrate the parameters and update chemical concentration in the runoff. In comparison with the calculation without data assimilation method, the updated solute concentration results are much closer to the experimental observed data and the calibrated parameters, hmix, \u03b1 and \u03b3, are no longer constants, but time dependent, which are physically reasonable. The study results indicate that the EnKF method significantly improves the prediction for solute chemical transfer from soil into surface runoff, whereas the extended Kalman filter will not, and the ensemble size of 100 will be suitable for the chemical concentration calculation based on our trial.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11242-011-9837-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050641", 
        "issn": [
          "0169-3913", 
          "1573-1634"
        ], 
        "name": "Transport in Porous Media", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "keywords": [
      "soluble chemical transfer", 
      "data assimilation method", 
      "surface runoff", 
      "chemical transfer", 
      "two-layer analytical model", 
      "assimilation method", 
      "EnKF method", 
      "Kalman filter", 
      "ensemble Kalman filter (EnKF) method", 
      "ensemble Kalman filter", 
      "laboratory experimental results", 
      "extended Kalman filter", 
      "solute concentration results", 
      "chemical concentrations", 
      "experimental observed data", 
      "Kalman filter method", 
      "runoff", 
      "ensemble size", 
      "analytical model", 
      "forward model", 
      "observed data", 
      "filter method", 
      "hmix", 
      "experimental results", 
      "concentration calculations", 
      "soil", 
      "filter", 
      "transfer", 
      "parameters", 
      "constant parameters", 
      "concentration results", 
      "prediction", 
      "method", 
      "calculations", 
      "model", 
      "concentration", 
      "results", 
      "size", 
      "data", 
      "study results", 
      "comparison", 
      "time", 
      "constants", 
      "trials", 
      "solute chemical transfer", 
      "chemical concentration calculation", 
      "Update Soluble Chemical Transfer"
    ], 
    "name": "Using an Ensemble Kalman Filter Method to Calibrate Parameters and Update Soluble Chemical Transfer From Soil to Surface Runoff", 
    "pagination": "133-152", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013929186"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11242-011-9837-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11242-011-9837-3", 
      "https://app.dimensions.ai/details/publication/pub.1013929186"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_542.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11242-011-9837-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11242-011-9837-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11242-011-9837-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11242-011-9837-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11242-011-9837-3'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      22 PREDICATES      77 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11242-011-9837-3 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:09
4 anzsrc-for:0904
5 anzsrc-for:0905
6 schema:author N3a82e242c0534a8b8f5a0dbc9b2d0d92
7 schema:citation sg:pub.10.1007/s00477-008-0289-4
8 sg:pub.10.1007/s10236-003-0036-9
9 schema:datePublished 2011-09-15
10 schema:datePublishedReg 2011-09-15
11 schema:description A data assimilation method, an ensemble Kalman filter (EnKF), is applied to simultaneously calibrate parameters and update prediction for soluble chemical transfer from soil into surface runoff. The soluble chemical transfer is calculated using a two-layer analytical model with constant parameters, hmix (water depth of the soil-mixing layer), α and γ (surface runoff and infiltration-related incomplete mixing parameters). The model is presented as the forward model. Based on laboratory experimental results, the measured chemical concentrations in the surface runoff are assimilated into the calculation through the developed EnKF method to calibrate the parameters and update chemical concentration in the runoff. In comparison with the calculation without data assimilation method, the updated solute concentration results are much closer to the experimental observed data and the calibrated parameters, hmix, α and γ, are no longer constants, but time dependent, which are physically reasonable. The study results indicate that the EnKF method significantly improves the prediction for solute chemical transfer from soil into surface runoff, whereas the extended Kalman filter will not, and the ensemble size of 100 will be suitable for the chemical concentration calculation based on our trial.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N508f83b3d67e4c97be7180fdc236e3d9
16 N5fff5600f2f1463da635a9e1472454fd
17 sg:journal.1050641
18 schema:keywords EnKF method
19 Kalman filter
20 Kalman filter method
21 Update Soluble Chemical Transfer
22 analytical model
23 assimilation method
24 calculations
25 chemical concentration calculation
26 chemical concentrations
27 chemical transfer
28 comparison
29 concentration
30 concentration calculations
31 concentration results
32 constant parameters
33 constants
34 data
35 data assimilation method
36 ensemble Kalman filter
37 ensemble Kalman filter (EnKF) method
38 ensemble size
39 experimental observed data
40 experimental results
41 extended Kalman filter
42 filter
43 filter method
44 forward model
45 hmix
46 laboratory experimental results
47 method
48 model
49 observed data
50 parameters
51 prediction
52 results
53 runoff
54 size
55 soil
56 soluble chemical transfer
57 solute chemical transfer
58 solute concentration results
59 study results
60 surface runoff
61 time
62 transfer
63 trials
64 two-layer analytical model
65 schema:name Using an Ensemble Kalman Filter Method to Calibrate Parameters and Update Soluble Chemical Transfer From Soil to Surface Runoff
66 schema:pagination 133-152
67 schema:productId N371b2b1aa24b4a57915acb916c7b9802
68 Nf44fd57cba1e457cb08b1a4cd7b0ebeb
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013929186
70 https://doi.org/10.1007/s11242-011-9837-3
71 schema:sdDatePublished 2022-01-01T18:25
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N2d57ab22f2744e0a918cbf224e4cbd6c
74 schema:url https://doi.org/10.1007/s11242-011-9837-3
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N2d57ab22f2744e0a918cbf224e4cbd6c schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N371b2b1aa24b4a57915acb916c7b9802 schema:name dimensions_id
81 schema:value pub.1013929186
82 rdf:type schema:PropertyValue
83 N3a82e242c0534a8b8f5a0dbc9b2d0d92 rdf:first sg:person.010314752347.24
84 rdf:rest N6e469cf35e744f6784c3d5168d59d461
85 N508f83b3d67e4c97be7180fdc236e3d9 schema:volumeNumber 91
86 rdf:type schema:PublicationVolume
87 N5fff5600f2f1463da635a9e1472454fd schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N6e469cf35e744f6784c3d5168d59d461 rdf:first sg:person.012556140447.41
90 rdf:rest N9c95c7b80f7042e0be32b5c4a86144e4
91 N9c95c7b80f7042e0be32b5c4a86144e4 rdf:first sg:person.014731165631.01
92 rdf:rest rdf:nil
93 Nf44fd57cba1e457cb08b1a4cd7b0ebeb schema:name doi
94 schema:value 10.1007/s11242-011-9837-3
95 rdf:type schema:PropertyValue
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
100 schema:name Applied Mathematics
101 rdf:type schema:DefinedTerm
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
106 schema:name Chemical Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
109 schema:name Civil Engineering
110 rdf:type schema:DefinedTerm
111 sg:journal.1050641 schema:issn 0169-3913
112 1573-1634
113 schema:name Transport in Porous Media
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.010314752347.24 schema:affiliation grid-institutes:grid.49470.3e
117 schema:familyName Tong
118 schema:givenName Ju-Xiu
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314752347.24
120 rdf:type schema:Person
121 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.255986.5
122 schema:familyName Hu
123 schema:givenName Bill X.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
125 rdf:type schema:Person
126 sg:person.014731165631.01 schema:affiliation grid-institutes:grid.49470.3e
127 schema:familyName Yang
128 schema:givenName Jin-Zhong
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
130 rdf:type schema:Person
131 sg:pub.10.1007/s00477-008-0289-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029417657
132 https://doi.org/10.1007/s00477-008-0289-4
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10236-003-0036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053511041
135 https://doi.org/10.1007/s10236-003-0036-9
136 rdf:type schema:CreativeWork
137 grid-institutes:grid.255986.5 schema:alternateName Department of Earth, Ocean and Atmospheric Sciences/Geological Sciences, Florida State University, 108 Carraway Building, 32306, Tallahassee, FL, USA
138 schema:name China University of Geosciences, 29 Xueyuan Road, 100083, Beijing, People’s Republic of China
139 Department of Earth, Ocean and Atmospheric Sciences/Geological Sciences, Florida State University, 108 Carraway Building, 32306, Tallahassee, FL, USA
140 rdf:type schema:Organization
141 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People’s Republic of China
142 schema:name China University of Geosciences, 29 Xueyuan Road, 100083, Beijing, People’s Republic of China
143 Department of Earth, Ocean and Atmospheric Sciences/Geological Sciences, Florida State University, 108 Carraway Building, 32306, Tallahassee, FL, USA
144 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, People’s Republic of China
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...