Red cell distribution width is a predictor of mortality in patients undergoing percutaneous coronary intervention View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01

AUTHORS

Omid Fatemi, Jaya Paranilam, Alex Rainow, Kevin Kennedy, Jason Choi, Donald Cutlip, Michael Pencina, Peter B. Berger, David J. Cohen, Neal S. Kleiman

ABSTRACT

Red cell distribution width (RDW), a measure of the variability in size of circulating erythrocytes, is an independent predictor of mortality in patients with cardiovascular disease. We hypothesized that RDW is a prognostic marker of death, myocardial infarction and unplanned revascularization in a broad population undergoing percutaneous coronary intervention (PCI). We investigated the prognostic value of RDW derived from a complete blood count drawn ≤24 h of PCI in 1,689 patients at four centers who underwent PCI between 2004 and 2007 in the evaluation of drug eluting stents and ischemic events registry. Patients who underwent blood transfusions were excluded. Multivariable analyses of death, MI, unplanned revascularization, and the combined occurrence of these events at 1 year were performed using methods from survival analysis. The analysis was adjusted for creatinine ≥1.5 mg/dL, hemoglobin, congestive heart failure, coronary artery bypass grafting history, male sex, BMI, atherosclerosis of ≥2 coronary vessels, and hypertension. In univariate analysis of RDW stratified by quartiles, membership in the highest quartile was a predictor of mortality as compared to the lowest quartile (HR 5.07, CI 2.07-12.40, p < 0.001). In multivariate analysis, RDW was not an independent predictor of unplanned revascularization after PCI; however, RDW remained an independent correlate of 1 year mortality (HR 1.65, CI 1.22-2.23, p = 0.001); with a continuous net reclassification improvement of 46.5% (95% CI 15.1-76.4%) and a relative integrated discrimination improvement of 57.8% (95% CI 22.1-94.9%) after PCI. RDW is a widely available independent correlate of 1-year mortality after PCI that increases the discriminative value of risk prediction in these patients. More... »

PAGES

57-64

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11239-012-0767-x

DOI

http://dx.doi.org/10.1007/s11239-012-0767-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032567026

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22752404


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Transfusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug-Eluting Stents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocyte Count", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocytes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Failure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemoglobins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Percutaneous Coronary Intervention", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MedStar Washington Hospital Center", 
          "id": "https://www.grid.ac/institutes/grid.415235.4", 
          "name": [
            "Washington Hospital Center, 110 Irving Street, 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fatemi", 
        "givenName": "Omid", 
        "id": "sg:person.014721251130.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014721251130.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Houston Methodist", 
          "id": "https://www.grid.ac/institutes/grid.63368.38", 
          "name": [
            "Methodist DeBakey Heart & Vascular Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paranilam", 
        "givenName": "Jaya", 
        "id": "sg:person.01202547665.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202547665.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth\u2013Hitchcock Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413480.a", 
          "name": [
            "Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rainow", 
        "givenName": "Alex", 
        "id": "sg:person.07452604723.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452604723.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Luke's Health System", 
          "id": "https://www.grid.ac/institutes/grid.419820.6", 
          "name": [
            "Saint Luke\u2019s Mid America Heart Institute, Kansas City, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kennedy", 
        "givenName": "Kevin", 
        "id": "sg:person.0644222300.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644222300.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beth Israel Deaconess Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239395.7", 
          "name": [
            "Beth Israel Deaconess Medical Center, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Jason", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Baim Institute for Clinical Research", 
          "id": "https://www.grid.ac/institutes/grid.488688.2", 
          "name": [
            "Beth Israel Deaconess Medical Center, Boston, MA, USA", 
            "Harvard Clinical Research Institute, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cutlip", 
        "givenName": "Donald", 
        "id": "sg:person.01210225756.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210225756.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Harvard Clinical Research Institute, Boston, MA, USA", 
            "Boston University School of Public Health, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pencina", 
        "givenName": "Michael", 
        "id": "sg:person.0601357532.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601357532.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geisinger Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.415341.6", 
          "name": [
            "Geisinger Clinic, Danville, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berger", 
        "givenName": "Peter B.", 
        "id": "sg:person.015541327517.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015541327517.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Luke's Health System", 
          "id": "https://www.grid.ac/institutes/grid.419820.6", 
          "name": [
            "Saint Luke\u2019s Mid America Heart Institute, Kansas City, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cohen", 
        "givenName": "David J.", 
        "id": "sg:person.012062711367.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062711367.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Houston Methodist", 
          "id": "https://www.grid.ac/institutes/grid.63368.38", 
          "name": [
            "Methodist DeBakey Heart & Vascular Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleiman", 
        "givenName": "Neal S.", 
        "id": "sg:person.01110750303.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110750303.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cardfail.2009.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002385373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.106.679985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002620380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurjhf/hfp179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007587127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2005.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008315919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2009.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011514538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa035655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011609047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/369533a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013050793", 
          "https://doi.org/10.1038/369533a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2008.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013603546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2009.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014873330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.297.18.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022020300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jns.2008.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023443541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780040112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025831554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heart.88.2.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027243765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ars.2008.2142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027769137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2007.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030917595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031143039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2009.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034716994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037258459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037258459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2007.02.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038203308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.08.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038588921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2008.11.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039836166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.107.727545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041351007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044960408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2009.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046390372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2010.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047579579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7352265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062645899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1160/th09-02-0127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063292007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074628814", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1043/1543-2165-133.4.628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077890777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078246018", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-01", 
    "datePublishedReg": "2013-01-01", 
    "description": "Red cell distribution width (RDW), a measure of the variability in size of circulating erythrocytes, is an independent predictor of mortality in patients with cardiovascular disease. We hypothesized that RDW is a prognostic marker of death, myocardial infarction and unplanned revascularization in a broad population undergoing percutaneous coronary intervention (PCI). We investigated the prognostic value of RDW derived from a complete blood count drawn \u226424 h of PCI in 1,689 patients at four centers who underwent PCI between 2004 and 2007 in the evaluation of drug eluting stents and ischemic events registry. Patients who underwent blood transfusions were excluded. Multivariable analyses of death, MI, unplanned revascularization, and the combined occurrence of these events at 1 year were performed using methods from survival analysis. The analysis was adjusted for creatinine \u22651.5 mg/dL, hemoglobin, congestive heart failure, coronary artery bypass grafting history, male sex, BMI, atherosclerosis of \u22652 coronary vessels, and hypertension. In univariate analysis of RDW stratified by quartiles, membership in the highest quartile was a predictor of mortality as compared to the lowest quartile (HR 5.07, CI 2.07-12.40, p < 0.001). In multivariate analysis, RDW was not an independent predictor of unplanned revascularization after PCI; however, RDW remained an independent correlate of 1 year mortality (HR 1.65, CI 1.22-2.23, p = 0.001); with a continuous net reclassification improvement of 46.5% (95% CI 15.1-76.4%) and a relative integrated discrimination improvement of 57.8% (95% CI 22.1-94.9%) after PCI. RDW is a widely available independent correlate of 1-year mortality after PCI that increases the discriminative value of risk prediction in these patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11239-012-0767-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1113719", 
        "issn": [
          "0929-5305", 
          "1573-742X"
        ], 
        "name": "Journal of Thrombosis and Thrombolysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Red cell distribution width is a predictor of mortality in patients undergoing percutaneous coronary intervention", 
    "pagination": "57-64", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b2556fdd1f166c9e642ca59076cb6b09c7fccb9dba792cd2c148e9e6cb8aa96"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22752404"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9502018"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11239-012-0767-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032567026"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11239-012-0767-x", 
      "https://app.dimensions.ai/details/publication/pub.1032567026"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11239-012-0767-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11239-012-0767-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11239-012-0767-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11239-012-0767-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11239-012-0767-x'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      76 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11239-012-0767-x schema:about N1025339aba81472196e7cefc8d3babd4
2 N14d8d6d3a44f4d988002f828ba981306
3 N28cfa70a8f0b43a2a14b5033f8c5b1eb
4 N40827ca2b9e748c5a52baaf70888c84b
5 N457f4a0d22434a3190825e848f331d64
6 N594aa539e22440b09f407812cfbf07fa
7 N70bd101c808841f087fc6b4cf308722c
8 N7614e62a376d4981a4bc53aaa2942a49
9 N7e725df79f3f40b6b7211c852bb6830d
10 Na8f858f3a23b4d2b822e1cdb843f4c38
11 Naf02071d3d0c4dd1a77437ee421b79e4
12 Nb16c5741faaa4aeaa1afa5e689ca0825
13 Nc6559a94deea4ecc802b9aaf8250b6d4
14 Nccc13f5dfe2a41e58ebe9e995dad4386
15 Nd4f17c27d3f84ac7a40d76b5af200321
16 Ndfa599e4f8f94457806b2cf996f907c3
17 Nef222463584e441f84e8bb63dcd5a238
18 anzsrc-for:11
19 anzsrc-for:1102
20 schema:author N3c7e11309cca4bc187e3ea4b589589ab
21 schema:citation sg:pub.10.1038/369533a0
22 https://app.dimensions.ai/details/publication/pub.1074628814
23 https://app.dimensions.ai/details/publication/pub.1078246018
24 https://doi.org/10.1001/archinternmed.2009.11
25 https://doi.org/10.1001/archinternmed.2009.55
26 https://doi.org/10.1001/jama.297.18.2001
27 https://doi.org/10.1002/sim.2929
28 https://doi.org/10.1002/sim.4085
29 https://doi.org/10.1002/sim.4348
30 https://doi.org/10.1002/sim.4780040112
31 https://doi.org/10.1016/j.ahj.2005.03.030
32 https://doi.org/10.1016/j.ahj.2009.07.024
33 https://doi.org/10.1016/j.amjcard.2009.09.027
34 https://doi.org/10.1016/j.amjcard.2010.06.006
35 https://doi.org/10.1016/j.cardfail.2009.11.003
36 https://doi.org/10.1016/j.ijcard.2008.11.187
37 https://doi.org/10.1016/j.jacc.2006.08.069
38 https://doi.org/10.1016/j.jacc.2007.02.067
39 https://doi.org/10.1016/j.jacc.2007.03.014
40 https://doi.org/10.1016/j.jacc.2008.05.031
41 https://doi.org/10.1016/j.jns.2008.10.024
42 https://doi.org/10.1043/1543-2165-133.4.628
43 https://doi.org/10.1056/nejmoa035655
44 https://doi.org/10.1089/ars.2008.2142
45 https://doi.org/10.1093/eurjhf/hfp179
46 https://doi.org/10.1126/science.7352265
47 https://doi.org/10.1136/heart.88.2.115
48 https://doi.org/10.1160/th09-02-0127
49 https://doi.org/10.1161/circulationaha.106.679985
50 https://doi.org/10.1161/circulationaha.107.727545
51 schema:datePublished 2013-01
52 schema:datePublishedReg 2013-01-01
53 schema:description Red cell distribution width (RDW), a measure of the variability in size of circulating erythrocytes, is an independent predictor of mortality in patients with cardiovascular disease. We hypothesized that RDW is a prognostic marker of death, myocardial infarction and unplanned revascularization in a broad population undergoing percutaneous coronary intervention (PCI). We investigated the prognostic value of RDW derived from a complete blood count drawn ≤24 h of PCI in 1,689 patients at four centers who underwent PCI between 2004 and 2007 in the evaluation of drug eluting stents and ischemic events registry. Patients who underwent blood transfusions were excluded. Multivariable analyses of death, MI, unplanned revascularization, and the combined occurrence of these events at 1 year were performed using methods from survival analysis. The analysis was adjusted for creatinine ≥1.5 mg/dL, hemoglobin, congestive heart failure, coronary artery bypass grafting history, male sex, BMI, atherosclerosis of ≥2 coronary vessels, and hypertension. In univariate analysis of RDW stratified by quartiles, membership in the highest quartile was a predictor of mortality as compared to the lowest quartile (HR 5.07, CI 2.07-12.40, p < 0.001). In multivariate analysis, RDW was not an independent predictor of unplanned revascularization after PCI; however, RDW remained an independent correlate of 1 year mortality (HR 1.65, CI 1.22-2.23, p = 0.001); with a continuous net reclassification improvement of 46.5% (95% CI 15.1-76.4%) and a relative integrated discrimination improvement of 57.8% (95% CI 22.1-94.9%) after PCI. RDW is a widely available independent correlate of 1-year mortality after PCI that increases the discriminative value of risk prediction in these patients.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N9723075851db4e49bbe50dd0493bcf7e
58 N9862cc041dbf4c84b1cc50b288d24ccc
59 sg:journal.1113719
60 schema:name Red cell distribution width is a predictor of mortality in patients undergoing percutaneous coronary intervention
61 schema:pagination 57-64
62 schema:productId N0cc7f9fa63a1489791546bd676185016
63 Naed2e4d3924a4f2ba09e4e4a5647fed1
64 Nb9ea080cb13348909ccd120d6ef46642
65 Nd9e6aa0fe0504981899566643c114873
66 Ne129fbe3b3cc4eb1bd76b8c07dcc814b
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032567026
68 https://doi.org/10.1007/s11239-012-0767-x
69 schema:sdDatePublished 2019-04-10T21:39
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N2cc5277c2cc443d7b7be0b8bcded3d20
72 schema:url http://link.springer.com/10.1007%2Fs11239-012-0767-x
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N078852edcb25463f97cee80115a5a952 rdf:first sg:person.015541327517.22
77 rdf:rest N4b8f5dd5dcca48d0ba574459f0ad6703
78 N0cc7f9fa63a1489791546bd676185016 schema:name doi
79 schema:value 10.1007/s11239-012-0767-x
80 rdf:type schema:PropertyValue
81 N1025339aba81472196e7cefc8d3babd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Blood Transfusion
83 rdf:type schema:DefinedTerm
84 N14d8d6d3a44f4d988002f828ba981306 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Drug-Eluting Stents
86 rdf:type schema:DefinedTerm
87 N1fc9c4bd35c7454bb9a6649c071bd291 rdf:first Nee61e4c635314db98cd6663d67facd89
88 rdf:rest Nbb36fe6d846145b988363578c61ffafe
89 N28cfa70a8f0b43a2a14b5033f8c5b1eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Female
91 rdf:type schema:DefinedTerm
92 N2cc5277c2cc443d7b7be0b8bcded3d20 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N2e593919bdb7430fba68f7b1abf260da rdf:first sg:person.07452604723.16
95 rdf:rest Nf231910de3644797a8d7d9b07c509fb0
96 N37f9e919ef75482bb66700bcc1e8831c rdf:first sg:person.01110750303.06
97 rdf:rest rdf:nil
98 N3c7e11309cca4bc187e3ea4b589589ab rdf:first sg:person.014721251130.67
99 rdf:rest Na4a5666ccda24f52b3cf87bd9bb8959d
100 N40827ca2b9e748c5a52baaf70888c84b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Predictive Value of Tests
102 rdf:type schema:DefinedTerm
103 N457f4a0d22434a3190825e848f331d64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Male
105 rdf:type schema:DefinedTerm
106 N4b8f5dd5dcca48d0ba574459f0ad6703 rdf:first sg:person.012062711367.38
107 rdf:rest N37f9e919ef75482bb66700bcc1e8831c
108 N594aa539e22440b09f407812cfbf07fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Humans
110 rdf:type schema:DefinedTerm
111 N70bd101c808841f087fc6b4cf308722c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Aged
113 rdf:type schema:DefinedTerm
114 N7614e62a376d4981a4bc53aaa2942a49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Heart Failure
116 rdf:type schema:DefinedTerm
117 N7e725df79f3f40b6b7211c852bb6830d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Erythrocyte Count
119 rdf:type schema:DefinedTerm
120 N9723075851db4e49bbe50dd0493bcf7e schema:volumeNumber 35
121 rdf:type schema:PublicationVolume
122 N9862cc041dbf4c84b1cc50b288d24ccc schema:issueNumber 1
123 rdf:type schema:PublicationIssue
124 Na4a5666ccda24f52b3cf87bd9bb8959d rdf:first sg:person.01202547665.05
125 rdf:rest N2e593919bdb7430fba68f7b1abf260da
126 Na8f858f3a23b4d2b822e1cdb843f4c38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Middle Aged
128 rdf:type schema:DefinedTerm
129 Naed2e4d3924a4f2ba09e4e4a5647fed1 schema:name dimensions_id
130 schema:value pub.1032567026
131 rdf:type schema:PropertyValue
132 Naf02071d3d0c4dd1a77437ee421b79e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Risk Factors
134 rdf:type schema:DefinedTerm
135 Nb16c5741faaa4aeaa1afa5e689ca0825 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Hemoglobins
137 rdf:type schema:DefinedTerm
138 Nb9ea080cb13348909ccd120d6ef46642 schema:name pubmed_id
139 schema:value 22752404
140 rdf:type schema:PropertyValue
141 Nbb36fe6d846145b988363578c61ffafe rdf:first sg:person.01210225756.75
142 rdf:rest Nf21f722cfc62467ba224995279ad16f5
143 Nc6559a94deea4ecc802b9aaf8250b6d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Biomarkers
145 rdf:type schema:DefinedTerm
146 Nccc13f5dfe2a41e58ebe9e995dad4386 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Sex Factors
148 rdf:type schema:DefinedTerm
149 Nd4f17c27d3f84ac7a40d76b5af200321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Follow-Up Studies
151 rdf:type schema:DefinedTerm
152 Nd9e6aa0fe0504981899566643c114873 schema:name readcube_id
153 schema:value 9b2556fdd1f166c9e642ca59076cb6b09c7fccb9dba792cd2c148e9e6cb8aa96
154 rdf:type schema:PropertyValue
155 Ndfa599e4f8f94457806b2cf996f907c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Percutaneous Coronary Intervention
157 rdf:type schema:DefinedTerm
158 Ne129fbe3b3cc4eb1bd76b8c07dcc814b schema:name nlm_unique_id
159 schema:value 9502018
160 rdf:type schema:PropertyValue
161 Nee61e4c635314db98cd6663d67facd89 schema:affiliation https://www.grid.ac/institutes/grid.239395.7
162 schema:familyName Choi
163 schema:givenName Jason
164 rdf:type schema:Person
165 Nef222463584e441f84e8bb63dcd5a238 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Erythrocytes
167 rdf:type schema:DefinedTerm
168 Nf21f722cfc62467ba224995279ad16f5 rdf:first sg:person.0601357532.17
169 rdf:rest N078852edcb25463f97cee80115a5a952
170 Nf231910de3644797a8d7d9b07c509fb0 rdf:first sg:person.0644222300.84
171 rdf:rest N1fc9c4bd35c7454bb9a6649c071bd291
172 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
173 schema:name Medical and Health Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
176 schema:name Cardiorespiratory Medicine and Haematology
177 rdf:type schema:DefinedTerm
178 sg:journal.1113719 schema:issn 0929-5305
179 1573-742X
180 schema:name Journal of Thrombosis and Thrombolysis
181 rdf:type schema:Periodical
182 sg:person.01110750303.06 schema:affiliation https://www.grid.ac/institutes/grid.63368.38
183 schema:familyName Kleiman
184 schema:givenName Neal S.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110750303.06
186 rdf:type schema:Person
187 sg:person.01202547665.05 schema:affiliation https://www.grid.ac/institutes/grid.63368.38
188 schema:familyName Paranilam
189 schema:givenName Jaya
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202547665.05
191 rdf:type schema:Person
192 sg:person.012062711367.38 schema:affiliation https://www.grid.ac/institutes/grid.419820.6
193 schema:familyName Cohen
194 schema:givenName David J.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062711367.38
196 rdf:type schema:Person
197 sg:person.01210225756.75 schema:affiliation https://www.grid.ac/institutes/grid.488688.2
198 schema:familyName Cutlip
199 schema:givenName Donald
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210225756.75
201 rdf:type schema:Person
202 sg:person.014721251130.67 schema:affiliation https://www.grid.ac/institutes/grid.415235.4
203 schema:familyName Fatemi
204 schema:givenName Omid
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014721251130.67
206 rdf:type schema:Person
207 sg:person.015541327517.22 schema:affiliation https://www.grid.ac/institutes/grid.415341.6
208 schema:familyName Berger
209 schema:givenName Peter B.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015541327517.22
211 rdf:type schema:Person
212 sg:person.0601357532.17 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
213 schema:familyName Pencina
214 schema:givenName Michael
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601357532.17
216 rdf:type schema:Person
217 sg:person.0644222300.84 schema:affiliation https://www.grid.ac/institutes/grid.419820.6
218 schema:familyName Kennedy
219 schema:givenName Kevin
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644222300.84
221 rdf:type schema:Person
222 sg:person.07452604723.16 schema:affiliation https://www.grid.ac/institutes/grid.413480.a
223 schema:familyName Rainow
224 schema:givenName Alex
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452604723.16
226 rdf:type schema:Person
227 sg:pub.10.1038/369533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013050793
228 https://doi.org/10.1038/369533a0
229 rdf:type schema:CreativeWork
230 https://app.dimensions.ai/details/publication/pub.1074628814 schema:CreativeWork
231 https://app.dimensions.ai/details/publication/pub.1078246018 schema:CreativeWork
232 https://doi.org/10.1001/archinternmed.2009.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011514538
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1001/archinternmed.2009.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034716994
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1001/jama.297.18.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022020300
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1002/sim.2929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044960408
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/sim.4085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037258459
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/sim.4348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031143039
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1002/sim.4780040112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025831554
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.ahj.2005.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008315919
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.ahj.2009.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046390372
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.amjcard.2009.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014873330
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.amjcard.2010.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047579579
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.cardfail.2009.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002385373
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.ijcard.2008.11.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039836166
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.jacc.2006.08.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038588921
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.jacc.2007.02.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038203308
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.jacc.2007.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030917595
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.jacc.2008.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013603546
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/j.jns.2008.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023443541
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1043/1543-2165-133.4.628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077890777
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1056/nejmoa035655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011609047
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1089/ars.2008.2142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027769137
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/eurjhf/hfp179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007587127
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1126/science.7352265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062645899
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1136/heart.88.2.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027243765
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1160/th09-02-0127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063292007
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1161/circulationaha.106.679985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002620380
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1161/circulationaha.107.727545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041351007
285 rdf:type schema:CreativeWork
286 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
287 schema:name Boston University School of Public Health, Boston, MA, USA
288 Harvard Clinical Research Institute, Boston, MA, USA
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.239395.7 schema:alternateName Beth Israel Deaconess Medical Center
291 schema:name Beth Israel Deaconess Medical Center, Boston, MA, USA
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.413480.a schema:alternateName Dartmouth–Hitchcock Medical Center
294 schema:name Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.415235.4 schema:alternateName MedStar Washington Hospital Center
297 schema:name Washington Hospital Center, 110 Irving Street, 20010, Washington, DC, USA
298 rdf:type schema:Organization
299 https://www.grid.ac/institutes/grid.415341.6 schema:alternateName Geisinger Medical Center
300 schema:name Geisinger Clinic, Danville, PA, USA
301 rdf:type schema:Organization
302 https://www.grid.ac/institutes/grid.419820.6 schema:alternateName Saint Luke's Health System
303 schema:name Saint Luke’s Mid America Heart Institute, Kansas City, MO, USA
304 rdf:type schema:Organization
305 https://www.grid.ac/institutes/grid.488688.2 schema:alternateName Baim Institute for Clinical Research
306 schema:name Beth Israel Deaconess Medical Center, Boston, MA, USA
307 Harvard Clinical Research Institute, Boston, MA, USA
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.63368.38 schema:alternateName Houston Methodist
310 schema:name Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...