SSA optimized digital pre-distorter for compensating non-linear distortion in high power amplifier View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-22

AUTHORS

Mridula Malhotra, Amandeep Singh Sappal

ABSTRACT

We applied the stochastic salp swarm algorithm (SSA) to design high power amplifier (PA) and digital pre-distorter (DPD) using generalized memory polynomial model. This algorithm has high exploitation and convergence speed to solve the non-linear coefficient of memory polynomial. We considered a single carrier WCDMA input for the static non-linearity of the memory based high power amplifier. Various simulations have been conducted to validate the performance of SSA over PA and DPD using different memory depths and degrees combinations which demonstrates that the proposed approach is an effective solution for linearity of high generation wideband transmitters. The performance of SSA is compared with particle swarm optimization and shows the superiority of SSA in terms of lower adjacent channel power ratio, error vector magnitude, normalized mean square error and modeling error. The implementation of SSA on PA and DPD has been done separately and then cascaded to generate a resultant linear output. More... »

PAGES

1-10

Journal

TITLE

Telecommunication Systems

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11235-019-00565-9

DOI

http://dx.doi.org/10.1007/s11235-019-00565-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112948408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Punjabi University", 
          "id": "https://www.grid.ac/institutes/grid.412580.a", 
          "name": [
            "ECE Department, Punjabi University, Patiala, PB, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malhotra", 
        "givenName": "Mridula", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Punjabi University", 
          "id": "https://www.grid.ac/institutes/grid.412580.a", 
          "name": [
            "ECE Department, Punjabi University, Patiala, PB, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sappal", 
        "givenName": "Amandeep Singh", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.protcy.2016.08.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006125614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/cn.2010.23024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019556085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-015-2346-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028328311", 
          "https://doi.org/10.1007/s11277-015-2346-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207217.2011.576599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050523950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20010940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056791580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lmwc.2007.915099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061362830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmm.2009.934516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061409179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbc.2011.2165008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061522185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbc.2013.2285631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061522334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmtt.2008.2004899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061707903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2006.879264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061800136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vlsi.2017.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083422762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2017.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090892996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lmwc.2017.2734760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091274280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icetets.2016.7603029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094063800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2001.934374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094578610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mwsym.2008.4633050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094813072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetecs.2006.1683148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095746347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2018/4510243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101625504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10470-018-1173-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101897698", 
          "https://doi.org/10.1007/s10470-018-1173-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10470-018-1173-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101897698", 
          "https://doi.org/10.1007/s10470-018-1173-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10470-018-1173-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101897698", 
          "https://doi.org/10.1007/s10470-018-1173-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2018.2833283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103820473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/synchroinfo.2018.8456943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107022036"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-22", 
    "datePublishedReg": "2019-03-22", 
    "description": "We applied the stochastic salp swarm algorithm (SSA) to design high power amplifier (PA) and digital pre-distorter (DPD) using generalized memory polynomial model. This algorithm has high exploitation and convergence speed to solve the non-linear coefficient of memory polynomial. We considered a single carrier WCDMA input for the static non-linearity of the memory based high power amplifier. Various simulations have been conducted to validate the performance of SSA over PA and DPD using different memory depths and degrees combinations which demonstrates that the proposed approach is an effective solution for linearity of high generation wideband transmitters. The performance of SSA is compared with particle swarm optimization and shows the superiority of SSA in terms of lower adjacent channel power ratio, error vector magnitude, normalized mean square error and modeling error. The implementation of SSA on PA and DPD has been done separately and then cascaded to generate a resultant linear output.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11235-019-00565-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049187", 
        "issn": [
          "1018-4864", 
          "1572-9451"
        ], 
        "name": "Telecommunication Systems", 
        "type": "Periodical"
      }
    ], 
    "name": "SSA optimized digital pre-distorter for compensating non-linear distortion in high power amplifier", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cde5aa7a856458762f3d5c738349e0d32b5fecfbc58bcd32af64863068e65c88"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11235-019-00565-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112948408"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11235-019-00565-9", 
      "https://app.dimensions.ai/details/publication/pub.1112948408"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72868_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11235-019-00565-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00565-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00565-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00565-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00565-9'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11235-019-00565-9 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N8efa91dfcbc44a1d86bc3ad8dbf8ded8
4 schema:citation sg:pub.10.1007/s10470-018-1173-x
5 sg:pub.10.1007/s11277-015-2346-x
6 https://doi.org/10.1016/j.advengsoft.2017.07.002
7 https://doi.org/10.1016/j.protcy.2016.08.077
8 https://doi.org/10.1016/j.vlsi.2017.01.001
9 https://doi.org/10.1049/el:20010940
10 https://doi.org/10.1080/00207217.2011.576599
11 https://doi.org/10.1109/cec.2001.934374
12 https://doi.org/10.1109/icetets.2016.7603029
13 https://doi.org/10.1109/lmwc.2007.915099
14 https://doi.org/10.1109/lmwc.2017.2734760
15 https://doi.org/10.1109/mmm.2009.934516
16 https://doi.org/10.1109/mwsym.2008.4633050
17 https://doi.org/10.1109/synchroinfo.2018.8456943
18 https://doi.org/10.1109/tbc.2011.2165008
19 https://doi.org/10.1109/tbc.2013.2285631
20 https://doi.org/10.1109/tmtt.2008.2004899
21 https://doi.org/10.1109/tsp.2006.879264
22 https://doi.org/10.1109/tvt.2018.2833283
23 https://doi.org/10.1109/vetecs.2006.1683148
24 https://doi.org/10.1155/2018/4510243
25 https://doi.org/10.4236/cn.2010.23024
26 schema:datePublished 2019-03-22
27 schema:datePublishedReg 2019-03-22
28 schema:description We applied the stochastic salp swarm algorithm (SSA) to design high power amplifier (PA) and digital pre-distorter (DPD) using generalized memory polynomial model. This algorithm has high exploitation and convergence speed to solve the non-linear coefficient of memory polynomial. We considered a single carrier WCDMA input for the static non-linearity of the memory based high power amplifier. Various simulations have been conducted to validate the performance of SSA over PA and DPD using different memory depths and degrees combinations which demonstrates that the proposed approach is an effective solution for linearity of high generation wideband transmitters. The performance of SSA is compared with particle swarm optimization and shows the superiority of SSA in terms of lower adjacent channel power ratio, error vector magnitude, normalized mean square error and modeling error. The implementation of SSA on PA and DPD has been done separately and then cascaded to generate a resultant linear output.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1049187
33 schema:name SSA optimized digital pre-distorter for compensating non-linear distortion in high power amplifier
34 schema:pagination 1-10
35 schema:productId N4e58d78abf3e456a966ecb2f3b5a3c7d
36 N7428df7016c3444eb640f39d4909f570
37 Nbc1802878b5548a6a29c906b4e874c55
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112948408
39 https://doi.org/10.1007/s11235-019-00565-9
40 schema:sdDatePublished 2019-04-11T12:55
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Ne6ea3d8a2d6b47e09f2ddb415a7f7678
43 schema:url https://link.springer.com/10.1007%2Fs11235-019-00565-9
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N4e58d78abf3e456a966ecb2f3b5a3c7d schema:name readcube_id
48 schema:value cde5aa7a856458762f3d5c738349e0d32b5fecfbc58bcd32af64863068e65c88
49 rdf:type schema:PropertyValue
50 N5faf3fcf747044f297d2ebafc3cc9826 schema:affiliation https://www.grid.ac/institutes/grid.412580.a
51 schema:familyName Malhotra
52 schema:givenName Mridula
53 rdf:type schema:Person
54 N7428df7016c3444eb640f39d4909f570 schema:name dimensions_id
55 schema:value pub.1112948408
56 rdf:type schema:PropertyValue
57 N7a7a3d09c5844092b18345622b316beb rdf:first N84b251561506415e8c7b6b1966d0f209
58 rdf:rest rdf:nil
59 N84b251561506415e8c7b6b1966d0f209 schema:affiliation https://www.grid.ac/institutes/grid.412580.a
60 schema:familyName Sappal
61 schema:givenName Amandeep Singh
62 rdf:type schema:Person
63 N8efa91dfcbc44a1d86bc3ad8dbf8ded8 rdf:first N5faf3fcf747044f297d2ebafc3cc9826
64 rdf:rest N7a7a3d09c5844092b18345622b316beb
65 Nbc1802878b5548a6a29c906b4e874c55 schema:name doi
66 schema:value 10.1007/s11235-019-00565-9
67 rdf:type schema:PropertyValue
68 Ne6ea3d8a2d6b47e09f2ddb415a7f7678 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
74 schema:name Electrical and Electronic Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1049187 schema:issn 1018-4864
77 1572-9451
78 schema:name Telecommunication Systems
79 rdf:type schema:Periodical
80 sg:pub.10.1007/s10470-018-1173-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101897698
81 https://doi.org/10.1007/s10470-018-1173-x
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s11277-015-2346-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028328311
84 https://doi.org/10.1007/s11277-015-2346-x
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.advengsoft.2017.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090892996
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.protcy.2016.08.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006125614
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.vlsi.2017.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083422762
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1049/el:20010940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056791580
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/00207217.2011.576599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050523950
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/cec.2001.934374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094578610
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/icetets.2016.7603029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094063800
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/lmwc.2007.915099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061362830
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/lmwc.2017.2734760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091274280
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/mmm.2009.934516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061409179
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/mwsym.2008.4633050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094813072
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/synchroinfo.2018.8456943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107022036
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/tbc.2011.2165008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061522185
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/tbc.2013.2285631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061522334
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tmtt.2008.2004899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061707903
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tsp.2006.879264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800136
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tvt.2018.2833283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103820473
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/vetecs.2006.1683148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095746347
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1155/2018/4510243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101625504
123 rdf:type schema:CreativeWork
124 https://doi.org/10.4236/cn.2010.23024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019556085
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.412580.a schema:alternateName Punjabi University
127 schema:name ECE Department, Punjabi University, Patiala, PB, India
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...