Ontology type: schema:ScholarlyArticle
2019-03-16
AUTHORSMohammed M. Ahmed, Essam H. Houssein, Aboul Ella Hassanien, Ayman Taha, Ehab Hassanien
ABSTRACTThe sink nodes in large-scale wireless sensor networks (LSWSNs) are responsible for receiving and processing the collected data from sensor nodes. Identifying the locations of sink nodes in LSWSNs play a vital role in term of saving energy. Furthermore, sink nodes have extremely extra resources such as large memory, powerful batteries, long-range antenna, etc. This paper proposes a multi-objective whale optimization algorithm (MOWOA) to determine the lowest number of sink nodes that cover the whole network. The major aim of MOWOA is to reduce the energy consumption and prolongs the lifetime of LSWSNs. To achieve these objectives, a fitness function has been formulated to decrease energy consumption and maximize the network’s lifetime. The experimental results revealed that the proposed MOWOA achieved a better efficiency in reducing the total power consumption by 26% compared with four well-known optimization algorithms: multi-objective grasshopper optimization algorithm, multi-objective salp swarm algorithm, multi-objective gray wolf optimization, multi-objective particle swarm optimization over all networks sizes. More... »
PAGES1-17
http://scigraph.springernature.com/pub.10.1007/s11235-019-00559-7
DOIhttp://dx.doi.org/10.1007/s11235-019-00559-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112829828
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Minia University",
"id": "https://www.grid.ac/institutes/grid.411806.a",
"name": [
"Faculty of Computers and Information, Minia University, Minya, Egypt",
"Scientific Research Group in Egypt (SRGE), Giza, Egypt"
],
"type": "Organization"
},
"familyName": "Ahmed",
"givenName": "Mohammed M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Minia University",
"id": "https://www.grid.ac/institutes/grid.411806.a",
"name": [
"Faculty of Computers and Information, Minia University, Minya, Egypt",
"Scientific Research Group in Egypt (SRGE), Giza, Egypt"
],
"type": "Organization"
},
"familyName": "Houssein",
"givenName": "Essam H.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cairo University",
"id": "https://www.grid.ac/institutes/grid.7776.1",
"name": [
"Faculty of Computers and Information, Cairo University, Giza, Egypt",
"Scientific Research Group in Egypt (SRGE), Giza, Egypt"
],
"type": "Organization"
},
"familyName": "Hassanien",
"givenName": "Aboul Ella",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cairo University",
"id": "https://www.grid.ac/institutes/grid.7776.1",
"name": [
"Faculty of Computers and Information, Cairo University, Giza, Egypt"
],
"type": "Organization"
},
"familyName": "Taha",
"givenName": "Ayman",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cairo University",
"id": "https://www.grid.ac/institutes/grid.7776.1",
"name": [
"Faculty of Computers and Information, Cairo University, Giza, Egypt"
],
"type": "Organization"
},
"familyName": "Hassanien",
"givenName": "Ehab",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1145/358923.358929",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009609425"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2011.02.031",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013786031"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-31880-4_35",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018925932",
"https://doi.org/10.1007/978-3-540-31880-4_35"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-31880-4_35",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018925932",
"https://doi.org/10.1007/978-3-540-31880-4_35"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11704-009-0005-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021891115",
"https://doi.org/10.1007/s11704-009-0005-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1016542229220",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022047248",
"https://doi.org/10.1023/a:1016542229220"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2016.02.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022479898"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30582-8_28",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024206261",
"https://doi.org/10.1007/978-3-540-30582-8_28"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30582-8_28",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024206261",
"https://doi.org/10.1007/978-3-540-30582-8_28"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11277-011-0453-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026672153",
"https://doi.org/10.1007/s11277-011-0453-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-016-2823-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027207192",
"https://doi.org/10.1007/s00521-016-2823-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2014/713427",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027923461"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-17144-4_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029034925",
"https://doi.org/10.1007/978-3-642-17144-4_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-17144-4_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029034925",
"https://doi.org/10.1007/978-3-642-17144-4_1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2015/810356",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031534256"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.adhoc.2012.03.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037880359"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2016.04.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038485436"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2015.10.039",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039561691"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-85729-652-8_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040277102",
"https://doi.org/10.1007/978-0-85729-652-8_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-85729-652-8_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040277102",
"https://doi.org/10.1007/978-0-85729-652-8_1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.swevo.2016.03.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052396451"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/dac.1336",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053161353"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.comnet.2016.01.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053430850"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.advengsoft.2016.01.008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053442576"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/4235.996017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061172126"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/comst.2016.2610578",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061258433"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/mcom.2002.1024422",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061393425"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/twc.2002.804190",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061824316"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5019/j.ijcir.2006.68",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072558956"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5815/ijitcs.2014.06.04",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073150175"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-81-322-2517-1_58",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085985746",
"https://doi.org/10.1007/978-81-322-2517-1_58"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.advengsoft.2017.07.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090892996"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10489-017-1019-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090995383",
"https://doi.org/10.1007/s10489-017-1019-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10489-017-1019-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090995383",
"https://doi.org/10.1007/s10489-017-1019-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-64861-3_68",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091403561",
"https://doi.org/10.1007/978-3-319-64861-3_68"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10489-017-1074-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092520436",
"https://doi.org/10.1007/s10489-017-1074-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icspcs.2013.6723994",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093197416"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/pccc.2012.6407744",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094133342"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ictbig.2016.7892662",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094813554"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icc.2004.1313226",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095200419"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iadcc.2013.6514260",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095683718"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/wcnc.2011.5779187",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095705969"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cec.2012.6252913",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095767015"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4018/978-1-4666-9911-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1096031523"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-74690-6_50",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100657734",
"https://doi.org/10.1007/978-3-319-74690-6_50"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-74690-6_50",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100657734",
"https://doi.org/10.1007/978-3-319-74690-6_50"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-981-10-8863-6_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103887173",
"https://doi.org/10.1007/978-981-10-8863-6_9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eswa.2018.06.023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104596533"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-03-16",
"datePublishedReg": "2019-03-16",
"description": "The sink nodes in large-scale wireless sensor networks (LSWSNs) are responsible for receiving and processing the collected data from sensor nodes. Identifying the locations of sink nodes in LSWSNs play a vital role in term of saving energy. Furthermore, sink nodes have extremely extra resources such as large memory, powerful batteries, long-range antenna, etc. This paper proposes a multi-objective whale optimization algorithm (MOWOA) to determine the lowest number of sink nodes that cover the whole network. The major aim of MOWOA is to reduce the energy consumption and prolongs the lifetime of LSWSNs. To achieve these objectives, a fitness function has been formulated to decrease energy consumption and maximize the network\u2019s lifetime. The experimental results revealed that the proposed MOWOA achieved a better efficiency in reducing the total power consumption by 26% compared with four well-known optimization algorithms: multi-objective grasshopper optimization algorithm, multi-objective salp swarm algorithm, multi-objective gray wolf optimization, multi-objective particle swarm optimization over all networks sizes.",
"genre": "research_article",
"id": "sg:pub.10.1007/s11235-019-00559-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1049187",
"issn": [
"1018-4864",
"1572-9451"
],
"name": "Telecommunication Systems",
"type": "Periodical"
}
],
"name": "Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm",
"pagination": "1-17",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"34755f627da307221da1f6a280d74f691556331a21c4dfb0a8bb8abe2ebc46fa"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11235-019-00559-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112829828"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11235-019-00559-7",
"https://app.dimensions.ai/details/publication/pub.1112829828"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118327_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs11235-019-00559-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00559-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00559-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00559-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00559-7'
This table displays all metadata directly associated to this object as RDF triples.
223 TRIPLES
21 PREDICATES
66 URIs
16 LITERALS
5 BLANK NODES