Forecasting the capacity of mobile networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-07

AUTHORS

João A. Bastos

ABSTRACT

The optimization of mobile network capacity usage is an essential operation to promote positive returns on network investments, prevent capacity bottlenecks, and deliver good end user experience. This study examines the performance of several statistical models to predict voice and data traffic in a mobile network. While no method dominates the others across all time series and prediction horizons, exponential smoothing and ARIMA models are good alternatives to forecast both voice and data traffic. This analysis shows that network managers have at their disposal a set of statistical tools to plan future capacity upgrades with the most effective solution, while optimizing their investment and maintaining good network quality. More... »

PAGES

1-12

References to SciGraph publications

  • 2008-09. Impact of cross-national diffusion process in telecommunications demand forecasting in TELECOMMUNICATION SYSTEMS
  • 1996-08. Bagging predictors in MACHINE LEARNING
  • Journal

    TITLE

    Telecommunication Systems

    ISSUE

    N/A

    VOLUME

    N/A

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11235-019-00556-w

    DOI

    http://dx.doi.org/10.1007/s11235-019-00556-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112609439


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nokia (Portugal)", 
              "id": "https://www.grid.ac/institutes/grid.422718.a", 
              "name": [
                "Nokia, Av. Calouste Gulbenkian 1, 3810-193, Aveiro, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bastos", 
            "givenName": "Jo\u00e3o A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0169-2070(02)00066-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002481551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-2070(02)00066-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002481551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00036840600905183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003402471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijforecast.2006.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020859751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijforecast.2015.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023811094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/13504850500461431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024614655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-2070(01)00143-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026156754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-2070(01)00143-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026156754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/for.953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027033616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbusres.2009.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027845231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-2070(00)00057-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028473017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1574-0706(05)01004-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032783516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.techfore.2010.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033588461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0169-2070(90)90097-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034242268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-2070(00)00066-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040292990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0169-2070(92)90009-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041203727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.techfore.2010.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043864882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijforecast.2007.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047419367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11235-008-9085-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050032958", 
              "https://doi.org/10.1007/s11235-008-9085-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijforecast.2014.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051324597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-1625(02)00392-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051961978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-1625(02)00392-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051961978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsc.2016.2599878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061787028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.35.3.372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064720560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icemi.2009.5274287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093486587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccchina.2015.7448619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094396332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/softcom.2007.4446113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095072585"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-07", 
        "datePublishedReg": "2019-03-07", 
        "description": "The optimization of mobile network capacity usage is an essential operation to promote positive returns on network investments, prevent capacity bottlenecks, and deliver good end user experience. This study examines the performance of several statistical models to predict voice and data traffic in a mobile network. While no method dominates the others across all time series and prediction horizons, exponential smoothing and ARIMA models are good alternatives to forecast both voice and data traffic. This analysis shows that network managers have at their disposal a set of statistical tools to plan future capacity upgrades with the most effective solution, while optimizing their investment and maintaining good network quality.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11235-019-00556-w", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049187", 
            "issn": [
              "1018-4864", 
              "1572-9451"
            ], 
            "name": "Telecommunication Systems", 
            "type": "Periodical"
          }
        ], 
        "name": "Forecasting the capacity of mobile networks", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cf2f1b28afef134f696d0c047bfaa6ec62f73b30adcf4ec53181ffb0518890c8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11235-019-00556-w"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112609439"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11235-019-00556-w", 
          "https://app.dimensions.ai/details/publication/pub.1112609439"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11707_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11235-019-00556-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00556-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00556-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00556-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11235-019-00556-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      21 PREDICATES      49 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11235-019-00556-w schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Nd0d7320de0dc4fc188c6888065169d3c
    4 schema:citation sg:pub.10.1007/bf00058655
    5 sg:pub.10.1007/s11235-008-9085-1
    6 https://doi.org/10.1002/for.953
    7 https://doi.org/10.1016/0169-2070(90)90097-u
    8 https://doi.org/10.1016/0169-2070(92)90009-x
    9 https://doi.org/10.1016/j.ijforecast.2006.03.005
    10 https://doi.org/10.1016/j.ijforecast.2007.05.002
    11 https://doi.org/10.1016/j.ijforecast.2014.09.003
    12 https://doi.org/10.1016/j.ijforecast.2015.07.002
    13 https://doi.org/10.1016/j.jbusres.2009.04.008
    14 https://doi.org/10.1016/j.techfore.2010.01.009
    15 https://doi.org/10.1016/j.techfore.2010.08.007
    16 https://doi.org/10.1016/s0040-1625(02)00392-x
    17 https://doi.org/10.1016/s0169-2070(00)00057-1
    18 https://doi.org/10.1016/s0169-2070(00)00066-2
    19 https://doi.org/10.1016/s0169-2070(01)00143-1
    20 https://doi.org/10.1016/s0169-2070(02)00066-3
    21 https://doi.org/10.1016/s1574-0706(05)01004-9
    22 https://doi.org/10.1080/00036840600905183
    23 https://doi.org/10.1080/13504850500461431
    24 https://doi.org/10.1109/iccchina.2015.7448619
    25 https://doi.org/10.1109/icemi.2009.5274287
    26 https://doi.org/10.1109/softcom.2007.4446113
    27 https://doi.org/10.1109/tsc.2016.2599878
    28 https://doi.org/10.1287/mnsc.35.3.372
    29 schema:datePublished 2019-03-07
    30 schema:datePublishedReg 2019-03-07
    31 schema:description The optimization of mobile network capacity usage is an essential operation to promote positive returns on network investments, prevent capacity bottlenecks, and deliver good end user experience. This study examines the performance of several statistical models to predict voice and data traffic in a mobile network. While no method dominates the others across all time series and prediction horizons, exponential smoothing and ARIMA models are good alternatives to forecast both voice and data traffic. This analysis shows that network managers have at their disposal a set of statistical tools to plan future capacity upgrades with the most effective solution, while optimizing their investment and maintaining good network quality.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf sg:journal.1049187
    36 schema:name Forecasting the capacity of mobile networks
    37 schema:pagination 1-12
    38 schema:productId N0d157610ae044356a4bf5b18919a6eb3
    39 N6e188705c5cd40d88f7a25dcdf384fc8
    40 N719a4d03c3ff4f9b9beb14a602f7a777
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112609439
    42 https://doi.org/10.1007/s11235-019-00556-w
    43 schema:sdDatePublished 2019-04-11T11:19
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Nabce9731cc9f45c895ce708e2e102a4d
    46 schema:url https://link.springer.com/10.1007%2Fs11235-019-00556-w
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N03652ea929a545fab02845811252d5f8 schema:affiliation https://www.grid.ac/institutes/grid.422718.a
    51 schema:familyName Bastos
    52 schema:givenName João A.
    53 rdf:type schema:Person
    54 N0d157610ae044356a4bf5b18919a6eb3 schema:name doi
    55 schema:value 10.1007/s11235-019-00556-w
    56 rdf:type schema:PropertyValue
    57 N6e188705c5cd40d88f7a25dcdf384fc8 schema:name readcube_id
    58 schema:value cf2f1b28afef134f696d0c047bfaa6ec62f73b30adcf4ec53181ffb0518890c8
    59 rdf:type schema:PropertyValue
    60 N719a4d03c3ff4f9b9beb14a602f7a777 schema:name dimensions_id
    61 schema:value pub.1112609439
    62 rdf:type schema:PropertyValue
    63 Nabce9731cc9f45c895ce708e2e102a4d schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Nd0d7320de0dc4fc188c6888065169d3c rdf:first N03652ea929a545fab02845811252d5f8
    66 rdf:rest rdf:nil
    67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Mathematical Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Statistics
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1049187 schema:issn 1018-4864
    74 1572-9451
    75 schema:name Telecommunication Systems
    76 rdf:type schema:Periodical
    77 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    78 https://doi.org/10.1007/bf00058655
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/s11235-008-9085-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050032958
    81 https://doi.org/10.1007/s11235-008-9085-1
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1002/for.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027033616
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0169-2070(90)90097-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1034242268
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/0169-2070(92)90009-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041203727
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.ijforecast.2006.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020859751
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/j.ijforecast.2007.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047419367
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.ijforecast.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051324597
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/j.ijforecast.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023811094
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.jbusres.2009.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027845231
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.techfore.2010.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033588461
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.techfore.2010.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043864882
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/s0040-1625(02)00392-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051961978
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/s0169-2070(00)00057-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028473017
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/s0169-2070(00)00066-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040292990
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/s0169-2070(01)00143-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026156754
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/s0169-2070(02)00066-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002481551
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/s1574-0706(05)01004-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032783516
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1080/00036840600905183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003402471
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1080/13504850500461431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024614655
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/iccchina.2015.7448619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094396332
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/icemi.2009.5274287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093486587
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/softcom.2007.4446113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095072585
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/tsc.2016.2599878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061787028
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1287/mnsc.35.3.372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720560
    128 rdf:type schema:CreativeWork
    129 https://www.grid.ac/institutes/grid.422718.a schema:alternateName Nokia (Portugal)
    130 schema:name Nokia, Av. Calouste Gulbenkian 1, 3810-193, Aveiro, Portugal
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...