Fitting of stochastic telecommunication network models via distance measures and Monte–Carlo tests View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-04

AUTHORS

C. Gloaguen, F. Fleischer, H. Schmidt, V. Schmidt

ABSTRACT

We explore real telecommunication data describing the spatial geometrical structure of an urban region and we propose a model fitting procedure, where a given choice of different non-iterated and iterated tessellation models is considered and fitted to real data. This model fitting procedure is based on a comparison of distances between characteristics of sample data sets and characteristics of different tessellation models by utilizing a chosen metric. Examples of such characteristics are the mean length of the edge-set or the mean number of vertices per unit area. In particular, after a short review of a stochastic-geometric telecommunication model and a detailed description of the model fitting algorithm, we verify the algorithm by using simulated test data and subsequently apply the procedure to infrastructure data of Paris. More... »

PAGES

353-377

References to SciGraph publications

  • 1996-03. Géométrie aléatoire et architecture de réseaux in ANNALS OF TELECOMMUNICATIONS
  • 2001-10. Aggregate and fractal tessellations in PROBABILITY THEORY AND RELATED FIELDS
  • 2004-06. Distributional properties of the typical cell of stationary iterated tessellations in MATHEMATICAL METHODS OF OPERATIONS RESEARCH
  • 2005-12. Simulation of typical Cox–Voronoi cells with a special regard to implementation tests in MATHEMATICAL METHODS OF OPERATIONS RESEARCH
  • 2000. Stochastische Geometrie in NONE
  • Journal

    TITLE

    Telecommunication Systems

    ISSUE

    4

    VOLUME

    31

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11235-006-6723-3

    DOI

    http://dx.doi.org/10.1007/s11235-006-6723-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007426939


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Orange (France)", 
              "id": "https://www.grid.ac/institutes/grid.89485.38", 
              "name": [
                "France Telecom, R&D Division RESA/NET/NSO, F-92794, Issy Moulineaux Cedex 9, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gloaguen", 
            "givenName": "C.", 
            "id": "sg:person.0736175422.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736175422.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ulm", 
              "id": "https://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Department of Applied Information Processing and Department of Stochastics, University of Ulm, D-89069, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fleischer", 
            "givenName": "F.", 
            "id": "sg:person.01331277725.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331277725.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ulm", 
              "id": "https://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Department of Stochastics, University of Ulm, D-89069, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "H.", 
            "id": "sg:person.01141401533.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141401533.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ulm", 
              "id": "https://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Department of Stochastics, University of Ulm, D-89069, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "V.", 
            "id": "sg:person.01051347101.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/15326340008807577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003825123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0001867800010806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007776595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.simpat.2004.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013065838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s000186780001226x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014097239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1019057453", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-322-80106-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019057453", 
              "https://doi.org/10.1007/978-3-322-80106-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-322-80106-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019057453", 
              "https://doi.org/10.1007/978-3-322-80106-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0001867800017195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023252559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00186-005-0036-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027939181", 
              "https://doi.org/10.1007/s00186-005-0036-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00186-005-0036-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027939181", 
              "https://doi.org/10.1007/s00186-005-0036-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1036745681", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9780203496817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036745681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001860300326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040764171", 
              "https://doi.org/10.1007/s001860300326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00008802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053393745", 
              "https://doi.org/10.1007/pl00008802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.47.4.619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064731167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02995506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085936341", 
              "https://doi.org/10.1007/bf02995506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infcom.1999.751663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094309830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470317013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109496296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109496296", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-04", 
        "datePublishedReg": "2006-04-01", 
        "description": "We explore real telecommunication data describing the spatial geometrical structure of an urban region and we propose a model fitting procedure, where a given choice of different non-iterated and iterated tessellation models is considered and fitted to real data. This model fitting procedure is based on a comparison of distances between characteristics of sample data sets and characteristics of different tessellation models by utilizing a chosen metric. Examples of such characteristics are the mean length of the edge-set or the mean number of vertices per unit area. In particular, after a short review of a stochastic-geometric telecommunication model and a detailed description of the model fitting algorithm, we verify the algorithm by using simulated test data and subsequently apply the procedure to infrastructure data of Paris.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11235-006-6723-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1049187", 
            "issn": [
              "1018-4864", 
              "1572-9451"
            ], 
            "name": "Telecommunication Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "Fitting of stochastic telecommunication network models via distance measures and Monte\u2013Carlo tests", 
        "pagination": "353-377", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "23603dd3740e382180708694dbc3ae00bd2d6044ecdcd556909e0c09e7226a54"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11235-006-6723-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007426939"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11235-006-6723-3", 
          "https://app.dimensions.ai/details/publication/pub.1007426939"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000581.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11235-006-6723-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11235-006-6723-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11235-006-6723-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11235-006-6723-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11235-006-6723-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    139 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11235-006-6723-3 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N9aaa32df359a438ab03ad541edfd2eda
    4 schema:citation sg:pub.10.1007/978-3-322-80106-7
    5 sg:pub.10.1007/bf02995506
    6 sg:pub.10.1007/pl00008802
    7 sg:pub.10.1007/s00186-005-0036-2
    8 sg:pub.10.1007/s001860300326
    9 https://app.dimensions.ai/details/publication/pub.1019057453
    10 https://app.dimensions.ai/details/publication/pub.1036745681
    11 https://app.dimensions.ai/details/publication/pub.1109496296
    12 https://doi.org/10.1002/9780470317013
    13 https://doi.org/10.1016/j.simpat.2004.02.001
    14 https://doi.org/10.1017/s0001867800010806
    15 https://doi.org/10.1017/s000186780001226x
    16 https://doi.org/10.1017/s0001867800017195
    17 https://doi.org/10.1080/15326340008807577
    18 https://doi.org/10.1109/infcom.1999.751663
    19 https://doi.org/10.1201/9780203496817
    20 https://doi.org/10.1287/opre.47.4.619
    21 schema:datePublished 2006-04
    22 schema:datePublishedReg 2006-04-01
    23 schema:description We explore real telecommunication data describing the spatial geometrical structure of an urban region and we propose a model fitting procedure, where a given choice of different non-iterated and iterated tessellation models is considered and fitted to real data. This model fitting procedure is based on a comparison of distances between characteristics of sample data sets and characteristics of different tessellation models by utilizing a chosen metric. Examples of such characteristics are the mean length of the edge-set or the mean number of vertices per unit area. In particular, after a short review of a stochastic-geometric telecommunication model and a detailed description of the model fitting algorithm, we verify the algorithm by using simulated test data and subsequently apply the procedure to infrastructure data of Paris.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N6a9c45908d7048fd83eb153ea61d1be4
    28 Neafdf30792664925a3c264bd1e3827bd
    29 sg:journal.1049187
    30 schema:name Fitting of stochastic telecommunication network models via distance measures and Monte–Carlo tests
    31 schema:pagination 353-377
    32 schema:productId N731be37f55a248f496ddc25307ee311d
    33 N734f3b10c2134431a70697310dfd0620
    34 Naa9626125db344e89dccfc3d1b402de8
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007426939
    36 https://doi.org/10.1007/s11235-006-6723-3
    37 schema:sdDatePublished 2019-04-10T22:44
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Nbb97661fa6964dedbbf0dbeecb60291c
    40 schema:url http://link.springer.com/10.1007%2Fs11235-006-6723-3
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N10e76d01626a4339a591cd306dc826c1 rdf:first sg:person.01051347101.48
    45 rdf:rest rdf:nil
    46 N3fde1c72b1b24708964d343c287cb0d9 rdf:first sg:person.01141401533.74
    47 rdf:rest N10e76d01626a4339a591cd306dc826c1
    48 N6a9c45908d7048fd83eb153ea61d1be4 schema:issueNumber 4
    49 rdf:type schema:PublicationIssue
    50 N6e595952e231430baf94a0fb4cd6e091 rdf:first sg:person.01331277725.99
    51 rdf:rest N3fde1c72b1b24708964d343c287cb0d9
    52 N731be37f55a248f496ddc25307ee311d schema:name dimensions_id
    53 schema:value pub.1007426939
    54 rdf:type schema:PropertyValue
    55 N734f3b10c2134431a70697310dfd0620 schema:name doi
    56 schema:value 10.1007/s11235-006-6723-3
    57 rdf:type schema:PropertyValue
    58 N9aaa32df359a438ab03ad541edfd2eda rdf:first sg:person.0736175422.90
    59 rdf:rest N6e595952e231430baf94a0fb4cd6e091
    60 Naa9626125db344e89dccfc3d1b402de8 schema:name readcube_id
    61 schema:value 23603dd3740e382180708694dbc3ae00bd2d6044ecdcd556909e0c09e7226a54
    62 rdf:type schema:PropertyValue
    63 Nbb97661fa6964dedbbf0dbeecb60291c schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Neafdf30792664925a3c264bd1e3827bd schema:volumeNumber 31
    66 rdf:type schema:PublicationVolume
    67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Mathematical Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Statistics
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1049187 schema:issn 1018-4864
    74 1572-9451
    75 schema:name Telecommunication Systems
    76 rdf:type schema:Periodical
    77 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
    78 schema:familyName Schmidt
    79 schema:givenName V.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
    81 rdf:type schema:Person
    82 sg:person.01141401533.74 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
    83 schema:familyName Schmidt
    84 schema:givenName H.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141401533.74
    86 rdf:type schema:Person
    87 sg:person.01331277725.99 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
    88 schema:familyName Fleischer
    89 schema:givenName F.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331277725.99
    91 rdf:type schema:Person
    92 sg:person.0736175422.90 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
    93 schema:familyName Gloaguen
    94 schema:givenName C.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736175422.90
    96 rdf:type schema:Person
    97 sg:pub.10.1007/978-3-322-80106-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019057453
    98 https://doi.org/10.1007/978-3-322-80106-7
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf02995506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085936341
    101 https://doi.org/10.1007/bf02995506
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/pl00008802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053393745
    104 https://doi.org/10.1007/pl00008802
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s00186-005-0036-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027939181
    107 https://doi.org/10.1007/s00186-005-0036-2
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s001860300326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040764171
    110 https://doi.org/10.1007/s001860300326
    111 rdf:type schema:CreativeWork
    112 https://app.dimensions.ai/details/publication/pub.1019057453 schema:CreativeWork
    113 https://app.dimensions.ai/details/publication/pub.1036745681 schema:CreativeWork
    114 https://app.dimensions.ai/details/publication/pub.1109496296 schema:CreativeWork
    115 https://doi.org/10.1002/9780470317013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496296
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.simpat.2004.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013065838
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1017/s0001867800010806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007776595
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1017/s000186780001226x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014097239
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1017/s0001867800017195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023252559
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1080/15326340008807577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003825123
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/infcom.1999.751663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094309830
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1201/9780203496817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036745681
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1287/opre.47.4.619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731167
    132 rdf:type schema:CreativeWork
    133 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
    134 schema:name Department of Applied Information Processing and Department of Stochastics, University of Ulm, D-89069, Ulm, Germany
    135 Department of Stochastics, University of Ulm, D-89069, Ulm, Germany
    136 rdf:type schema:Organization
    137 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
    138 schema:name France Telecom, R&D Division RESA/NET/NSO, F-92794, Issy Moulineaux Cedex 9, France
    139 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...