Extreme bosonic linear channels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-02

AUTHORS

A. S. Holevo

ABSTRACT

The set of all channels with a fixed input and output is convex. We first give a convenient formulation of the necessary and sufficient condition for a channel to be an extreme point of this set in terms of the complementary channel, a notion of great importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra in the spirit of Arveson. We then use this formulation to prove our main result: under certain nondegeneracy conditions, environmental purity is necessary and sufficient for the extremality of a bosonic linear (quasifree) channel. It hence follows that a Gaussian channel between finite-mode bosonic systems is extreme if and only if it has minimum noise. More... »

PAGES

288-297

References to SciGraph publications

  • 1969-12. Subalgebras ofC*-algebras in ACTA MATHEMATICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11232-013-0026-0

    DOI

    http://dx.doi.org/10.1007/s11232-013-0026-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036111953


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Steklov Mathematical Institute, RAS, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holevo", 
            "givenName": "A. S.", 
            "id": "sg:person.012742037634.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physreva.84.042311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005161562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.84.042311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005161562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02392388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014223727", 
              "https://doi.org/10.1007/bf02392388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.84.621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029564491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.84.621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029564491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0024-3795(75)90075-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032363448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/8/12/310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036901610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0034-4877(79)90049-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040301238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-96-03161-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041441756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/33/28/310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059076983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.63.032312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060496978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.63.032312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060496978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0040585x97982244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062878631"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-02", 
        "datePublishedReg": "2013-02-01", 
        "description": "The set of all channels with a fixed input and output is convex. We first give a convenient formulation of the necessary and sufficient condition for a channel to be an extreme point of this set in terms of the complementary channel, a notion of great importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra in the spirit of Arveson. We then use this formulation to prove our main result: under certain nondegeneracy conditions, environmental purity is necessary and sufficient for the extremality of a bosonic linear (quasifree) channel. It hence follows that a Gaussian channel between finite-mode bosonic systems is extreme if and only if it has minimum noise.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11232-013-0026-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "2305-3135"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "174"
          }
        ], 
        "name": "Extreme bosonic linear channels", 
        "pagination": "288-297", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ac060564fa836ea23805209783bb012003fe6502e5b52ab21d6ff6c2a024a709"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11232-013-0026-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036111953"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11232-013-0026-0", 
          "https://app.dimensions.ai/details/publication/pub.1036111953"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000523.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11232-013-0026-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11232-013-0026-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11232-013-0026-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11232-013-0026-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11232-013-0026-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11232-013-0026-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3e5ac780fe0544939bf2c9cf463f4d30
    4 schema:citation sg:pub.10.1007/bf02392388
    5 https://doi.org/10.1016/0024-3795(75)90075-0
    6 https://doi.org/10.1016/0034-4877(79)90049-1
    7 https://doi.org/10.1088/0305-4470/33/28/310
    8 https://doi.org/10.1088/1367-2630/8/12/310
    9 https://doi.org/10.1090/s0002-9939-96-03161-9
    10 https://doi.org/10.1103/physreva.63.032312
    11 https://doi.org/10.1103/physreva.84.042311
    12 https://doi.org/10.1103/revmodphys.84.621
    13 https://doi.org/10.1137/s0040585x97982244
    14 schema:datePublished 2013-02
    15 schema:datePublishedReg 2013-02-01
    16 schema:description The set of all channels with a fixed input and output is convex. We first give a convenient formulation of the necessary and sufficient condition for a channel to be an extreme point of this set in terms of the complementary channel, a notion of great importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra in the spirit of Arveson. We then use this formulation to prove our main result: under certain nondegeneracy conditions, environmental purity is necessary and sufficient for the extremality of a bosonic linear (quasifree) channel. It hence follows that a Gaussian channel between finite-mode bosonic systems is extreme if and only if it has minimum noise.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N1a290eccf83d40e580299f4c84d89cdf
    21 N5997afaae25c4454836f31e935829f6b
    22 sg:journal.1327888
    23 schema:name Extreme bosonic linear channels
    24 schema:pagination 288-297
    25 schema:productId N6166181828ca4808abda290758261278
    26 Nc7d79a9060e846f59dcd2c0606d520ba
    27 Ne1ba5adb9f0245f9bff62279596487b5
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036111953
    29 https://doi.org/10.1007/s11232-013-0026-0
    30 schema:sdDatePublished 2019-04-11T02:10
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N3bc51d0741064b4d8e3e19a7bd65c9f3
    33 schema:url http://link.springer.com/10.1007%2Fs11232-013-0026-0
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N1a290eccf83d40e580299f4c84d89cdf schema:issueNumber 2
    38 rdf:type schema:PublicationIssue
    39 N3bc51d0741064b4d8e3e19a7bd65c9f3 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N3e5ac780fe0544939bf2c9cf463f4d30 rdf:first sg:person.012742037634.56
    42 rdf:rest rdf:nil
    43 N5997afaae25c4454836f31e935829f6b schema:volumeNumber 174
    44 rdf:type schema:PublicationVolume
    45 N6166181828ca4808abda290758261278 schema:name doi
    46 schema:value 10.1007/s11232-013-0026-0
    47 rdf:type schema:PropertyValue
    48 Nc7d79a9060e846f59dcd2c0606d520ba schema:name readcube_id
    49 schema:value ac060564fa836ea23805209783bb012003fe6502e5b52ab21d6ff6c2a024a709
    50 rdf:type schema:PropertyValue
    51 Ne1ba5adb9f0245f9bff62279596487b5 schema:name dimensions_id
    52 schema:value pub.1036111953
    53 rdf:type schema:PropertyValue
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Pure Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1327888 schema:issn 0040-5779
    61 2305-3135
    62 schema:name Theoretical and Mathematical Physics
    63 rdf:type schema:Periodical
    64 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    65 schema:familyName Holevo
    66 schema:givenName A. S.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
    68 rdf:type schema:Person
    69 sg:pub.10.1007/bf02392388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014223727
    70 https://doi.org/10.1007/bf02392388
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1016/0024-3795(75)90075-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032363448
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1016/0034-4877(79)90049-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040301238
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1088/0305-4470/33/28/310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059076983
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1088/1367-2630/8/12/310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036901610
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1090/s0002-9939-96-03161-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041441756
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1103/physreva.63.032312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496978
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1103/physreva.84.042311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005161562
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1103/revmodphys.84.621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029564491
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1137/s0040585x97982244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878631
    89 rdf:type schema:CreativeWork
    90 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    91 schema:name Steklov Mathematical Institute, RAS, Moscow, Russia
    92 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...