Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07

AUTHORS

V. N. Rodionov, G. A. Kravtsova, A. M. Mandel’

ABSTRACT

We study the effects of electromagnetic fields on nonrelativistic charged spinning particles bound by a short-range potential. We analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional δ-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependences of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example. More... »

PAGES

960-971

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11232-010-0076-5

DOI

http://dx.doi.org/10.1007/s11232-010-0076-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004479127


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian State Geological prospecting University", 
          "id": "https://www.grid.ac/institutes/grid.472360.4", 
          "name": [
            "Russian State Geological Prospecting University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodionov", 
        "givenName": "V. N.", 
        "id": "sg:person.011164524043.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kravtsova", 
        "givenName": "G. A.", 
        "id": "sg:person.016327015147.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327015147.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Aviation Institute", 
          "id": "https://www.grid.ac/institutes/grid.17758.3c", 
          "name": [
            "Moscow Aviation Institute (State Technical University), Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandel\u2019", 
        "givenName": "A. M.", 
        "id": "sg:person.012756342767.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012756342767.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11232-005-0181-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005393280", 
          "https://doi.org/10.1007/s11232-005-0181-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11232-005-0181-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005393280", 
          "https://doi.org/10.1007/s11232-005-0181-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1490000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006326946", 
          "https://doi.org/10.1134/1.1490000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.558557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035277039", 
          "https://doi.org/10.1134/1.558557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/33/15/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038672694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.062111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039194282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.062111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039194282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1519315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041914169", 
          "https://doi.org/10.1134/1.1519315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu2004v047n09abeh001812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058173666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732305016695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062913438"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "We study the effects of electromagnetic fields on nonrelativistic charged spinning particles bound by a short-range potential. We analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional \u03b4-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependences of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11232-010-0076-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "164"
      }
    ], 
    "name": "Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field", 
    "pagination": "960-971", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1557c9513dfe653ec3b7a3b10ff029ea73a93e82135eae2ab954065a195aa931"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11232-010-0076-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004479127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11232-010-0076-5", 
      "https://app.dimensions.ai/details/publication/pub.1004479127"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000580.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11232-010-0076-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11232-010-0076-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11232-010-0076-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11232-010-0076-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11232-010-0076-5'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11232-010-0076-5 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N7d3c25a1ef954b58bf4d193a1622522c
4 schema:citation sg:pub.10.1007/s11232-005-0181-z
5 sg:pub.10.1134/1.1490000
6 sg:pub.10.1134/1.1519315
7 sg:pub.10.1134/1.558557
8 https://doi.org/10.1070/pu2004v047n09abeh001812
9 https://doi.org/10.1088/0953-4075/33/15/201
10 https://doi.org/10.1103/physreva.75.062111
11 https://doi.org/10.1142/s0217732305016695
12 schema:datePublished 2010-07
13 schema:datePublishedReg 2010-07-01
14 schema:description We study the effects of electromagnetic fields on nonrelativistic charged spinning particles bound by a short-range potential. We analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional δ-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependences of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N526b28eea1f84a6ca7496e3282653380
19 N9cab0f6339a44a01aff419e35c8e691a
20 sg:journal.1327888
21 schema:name Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field
22 schema:pagination 960-971
23 schema:productId N221151619eaf4ea182c230511a8db89c
24 N43f8d9ba06814d65bbff70e086976766
25 Nc82edfba5fb44ccc8c62004227ec3134
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004479127
27 https://doi.org/10.1007/s11232-010-0076-5
28 schema:sdDatePublished 2019-04-10T20:56
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N5c75774b52bf4cdbb8ba38ddbde7095d
31 schema:url http://link.springer.com/10.1007%2Fs11232-010-0076-5
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N221151619eaf4ea182c230511a8db89c schema:name dimensions_id
36 schema:value pub.1004479127
37 rdf:type schema:PropertyValue
38 N36b7437a1b8b451992690dbd60c05d40 rdf:first sg:person.016327015147.17
39 rdf:rest Nc986cb4c3316438c9d4f4de0a38dc705
40 N43f8d9ba06814d65bbff70e086976766 schema:name doi
41 schema:value 10.1007/s11232-010-0076-5
42 rdf:type schema:PropertyValue
43 N526b28eea1f84a6ca7496e3282653380 schema:volumeNumber 164
44 rdf:type schema:PublicationVolume
45 N5c75774b52bf4cdbb8ba38ddbde7095d schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N7d3c25a1ef954b58bf4d193a1622522c rdf:first sg:person.011164524043.88
48 rdf:rest N36b7437a1b8b451992690dbd60c05d40
49 N9cab0f6339a44a01aff419e35c8e691a schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 Nc82edfba5fb44ccc8c62004227ec3134 schema:name readcube_id
52 schema:value 1557c9513dfe653ec3b7a3b10ff029ea73a93e82135eae2ab954065a195aa931
53 rdf:type schema:PropertyValue
54 Nc986cb4c3316438c9d4f4de0a38dc705 rdf:first sg:person.012756342767.37
55 rdf:rest rdf:nil
56 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
57 schema:name Physical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
60 schema:name Other Physical Sciences
61 rdf:type schema:DefinedTerm
62 sg:journal.1327888 schema:issn 0040-5779
63 2305-3135
64 schema:name Theoretical and Mathematical Physics
65 rdf:type schema:Periodical
66 sg:person.011164524043.88 schema:affiliation https://www.grid.ac/institutes/grid.472360.4
67 schema:familyName Rodionov
68 schema:givenName V. N.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88
70 rdf:type schema:Person
71 sg:person.012756342767.37 schema:affiliation https://www.grid.ac/institutes/grid.17758.3c
72 schema:familyName Mandel’
73 schema:givenName A. M.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012756342767.37
75 rdf:type schema:Person
76 sg:person.016327015147.17 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
77 schema:familyName Kravtsova
78 schema:givenName G. A.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327015147.17
80 rdf:type schema:Person
81 sg:pub.10.1007/s11232-005-0181-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005393280
82 https://doi.org/10.1007/s11232-005-0181-z
83 rdf:type schema:CreativeWork
84 sg:pub.10.1134/1.1490000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006326946
85 https://doi.org/10.1134/1.1490000
86 rdf:type schema:CreativeWork
87 sg:pub.10.1134/1.1519315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041914169
88 https://doi.org/10.1134/1.1519315
89 rdf:type schema:CreativeWork
90 sg:pub.10.1134/1.558557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035277039
91 https://doi.org/10.1134/1.558557
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1070/pu2004v047n09abeh001812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058173666
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1088/0953-4075/33/15/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038672694
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreva.75.062111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039194282
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1142/s0217732305016695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062913438
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
102 schema:name Lomonosov Moscow State University, Moscow, Russia
103 rdf:type schema:Organization
104 https://www.grid.ac/institutes/grid.17758.3c schema:alternateName Moscow Aviation Institute
105 schema:name Moscow Aviation Institute (State Technical University), Moscow, Russia
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.472360.4 schema:alternateName Russian State Geological prospecting University
108 schema:name Russian State Geological Prospecting University, Moscow, Russia
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...