Projective line over the finite quotient ring GF(2)[x]/〈x3 − x〉 and quantum entanglement: Theoretical background View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-04

AUTHORS

M. Saniga, M. Planat

ABSTRACT

We consider the projective line over the finite quotient ring R⋄ ≡ GF(2)[x]/〈x3 − x〉. The line is endowed with 18 points, spanning the neighborhoods of three pairwise distant points. Because R⋄ is not a local ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint families under the reduction modulo either of the two maximal ideals of the ring. Two of the families contain four points each, and they swap their roles when switching from one ideal to the other, the points in one family merging with (the image of) the point in question and the points in the other family passing in pairs into the remaining two points of the associated ordinary projective line of order two. The single point in the remaining family passes to the reference point under both maps, and its existence stems from a nontrivial character of the Jacobson radical of the ring. The quotient ring is isomorphic to GF(2) ⊗ GF(2). The projective line over features nine points, each of them surrounded by four neighbors and four distant points, and any two distant points share two neighbors. We surmise that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will discuss in detail in Part II of this paper. More... »

PAGES

474-481

References to SciGraph publications

  • 1923-12. Die natürliche Geometrie in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • 2000-12. Projective representations i. projective lines over rings in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • 1991-11. Literature on geometry over rings in JOURNAL OF GEOMETRY
  • 1981-09. Projective planes over rings of stable rank 2 in GEOMETRIAE DEDICATA
  • 2007-05. Projective line over the finite quotient ring GF(2)[x]/〈x3 ™ x〉 and quantum entanglement: The Mermin “magic” square/pentagram in THEORETICAL AND MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y

    DOI

    http://dx.doi.org/10.1007/s11232-007-0035-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015916706


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1608", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Sociology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Studies in Human Society", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Astronomical Institute", 
              "id": "https://www.grid.ac/institutes/grid.493212.f", 
              "name": [
                "Astronomical Institute, Slovak Academy of Sciences, Tatransk\u00e1 Lomnica, Slovak Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saniga", 
            "givenName": "M.", 
            "id": "sg:person.015610617470.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610617470.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Franche Comt\u00e9 \u00c9lectronique M\u00e9canique Thermique et Optique Sciences et Technologies", 
              "id": "https://www.grid.ac/institutes/grid.462068.e", 
              "name": [
                "D\u00e9partement LPMO, Institut FEMTO-ST, CNRS, Besan\u00e7on, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Planat", 
            "givenName": "M.", 
            "id": "sg:person.016076407625.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076407625.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00149352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002392354", 
              "https://doi.org/10.1007/bf00149352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00149352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002392354", 
              "https://doi.org/10.1007/bf00149352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009445481", 
              "https://doi.org/10.1007/bf01231877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-044488355-1/50021-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009527534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-007-0049-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028110868", 
              "https://doi.org/10.1007/s11232-007-0049-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/39/2/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028113054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/39/2/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028113054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-044488355-1/50016-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029853290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02940921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037915995", 
              "https://doi.org/10.1007/bf02940921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02940921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037915995", 
              "https://doi.org/10.1007/bf02940921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02951847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050531234", 
              "https://doi.org/10.1007/bf02951847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.65.803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.65.803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1512/iumj.1968.17.17004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067510923"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-04", 
        "datePublishedReg": "2007-04-01", 
        "description": "We consider the projective line over the finite quotient ring R\u22c4 \u2261 GF(2)[x]/\u3008x3 \u2212 x\u3009. The line is endowed with 18 points, spanning the neighborhoods of three pairwise distant points. Because R\u22c4 is not a local ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint families under the reduction modulo either of the two maximal ideals of the ring. Two of the families contain four points each, and they swap their roles when switching from one ideal to the other, the points in one family merging with (the image of) the point in question and the points in the other family passing in pairs into the remaining two points of the associated ordinary projective line of order two. The single point in the remaining family passes to the reference point under both maps, and its existence stems from a nontrivial character of the Jacobson radical of the ring. The quotient ring is isomorphic to GF(2) \u2297 GF(2). The projective line over features nine points, each of them surrounded by four neighbors and four distant points, and any two distant points share two neighbors. We surmise that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will discuss in detail in Part II of this paper.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11232-007-0035-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "2305-3135"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "151"
          }
        ], 
        "name": "Projective line over the finite quotient ring GF(2)[x]/\u3008x3 \u2212 x\u3009 and quantum entanglement: Theoretical background", 
        "pagination": "474-481", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4bd7390c7e9b40002511f47990ade76d8003fd9a06c3cd6321f43af3b5280bfd"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11232-007-0035-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015916706"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11232-007-0035-y", 
          "https://app.dimensions.ai/details/publication/pub.1015916706"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71689_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11232-007-0035-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11232-007-0035-y schema:about anzsrc-for:16
    2 anzsrc-for:1608
    3 schema:author N56a1ed9a33ff42748a1f56397214d6ee
    4 schema:citation sg:pub.10.1007/bf00149352
    5 sg:pub.10.1007/bf01231877
    6 sg:pub.10.1007/bf02940921
    7 sg:pub.10.1007/bf02951847
    8 sg:pub.10.1007/s11232-007-0049-5
    9 https://doi.org/10.1016/b978-044488355-1/50016-5
    10 https://doi.org/10.1016/b978-044488355-1/50021-9
    11 https://doi.org/10.1088/0305-4470/39/2/013
    12 https://doi.org/10.1103/revmodphys.65.803
    13 https://doi.org/10.1512/iumj.1968.17.17004
    14 schema:datePublished 2007-04
    15 schema:datePublishedReg 2007-04-01
    16 schema:description We consider the projective line over the finite quotient ring R⋄ ≡ GF(2)[x]/〈x3 − x〉. The line is endowed with 18 points, spanning the neighborhoods of three pairwise distant points. Because R⋄ is not a local ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint families under the reduction modulo either of the two maximal ideals of the ring. Two of the families contain four points each, and they swap their roles when switching from one ideal to the other, the points in one family merging with (the image of) the point in question and the points in the other family passing in pairs into the remaining two points of the associated ordinary projective line of order two. The single point in the remaining family passes to the reference point under both maps, and its existence stems from a nontrivial character of the Jacobson radical of the ring. The quotient ring is isomorphic to GF(2) ⊗ GF(2). The projective line over features nine points, each of them surrounded by four neighbors and four distant points, and any two distant points share two neighbors. We surmise that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will discuss in detail in Part II of this paper.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N0854e701ad0749528785f560cddfda8c
    21 N7a13673619234fa481b420ca74931b60
    22 sg:journal.1327888
    23 schema:name Projective line over the finite quotient ring GF(2)[x]/〈x3 − x〉 and quantum entanglement: Theoretical background
    24 schema:pagination 474-481
    25 schema:productId N387b916dbceb4225a51a12eeb6cb5cc7
    26 N4a4abfd37e554442b47927962baa2c4e
    27 Na0e216407cdd47ba99dff4c05f09259d
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015916706
    29 https://doi.org/10.1007/s11232-007-0035-y
    30 schema:sdDatePublished 2019-04-11T12:58
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N89812e94efa648d991c9ef3941ed29f6
    33 schema:url http://link.springer.com/10.1007%2Fs11232-007-0035-y
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N0854e701ad0749528785f560cddfda8c schema:volumeNumber 151
    38 rdf:type schema:PublicationVolume
    39 N18a0b120c37340b6a2eb9f6ab3d51b8f rdf:first sg:person.016076407625.27
    40 rdf:rest rdf:nil
    41 N387b916dbceb4225a51a12eeb6cb5cc7 schema:name readcube_id
    42 schema:value 4bd7390c7e9b40002511f47990ade76d8003fd9a06c3cd6321f43af3b5280bfd
    43 rdf:type schema:PropertyValue
    44 N4a4abfd37e554442b47927962baa2c4e schema:name dimensions_id
    45 schema:value pub.1015916706
    46 rdf:type schema:PropertyValue
    47 N56a1ed9a33ff42748a1f56397214d6ee rdf:first sg:person.015610617470.96
    48 rdf:rest N18a0b120c37340b6a2eb9f6ab3d51b8f
    49 N7a13673619234fa481b420ca74931b60 schema:issueNumber 1
    50 rdf:type schema:PublicationIssue
    51 N89812e94efa648d991c9ef3941ed29f6 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Na0e216407cdd47ba99dff4c05f09259d schema:name doi
    54 schema:value 10.1007/s11232-007-0035-y
    55 rdf:type schema:PropertyValue
    56 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Studies in Human Society
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:1608 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Sociology
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1327888 schema:issn 0040-5779
    63 2305-3135
    64 schema:name Theoretical and Mathematical Physics
    65 rdf:type schema:Periodical
    66 sg:person.015610617470.96 schema:affiliation https://www.grid.ac/institutes/grid.493212.f
    67 schema:familyName Saniga
    68 schema:givenName M.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610617470.96
    70 rdf:type schema:Person
    71 sg:person.016076407625.27 schema:affiliation https://www.grid.ac/institutes/grid.462068.e
    72 schema:familyName Planat
    73 schema:givenName M.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076407625.27
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf00149352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002392354
    77 https://doi.org/10.1007/bf00149352
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf01231877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009445481
    80 https://doi.org/10.1007/bf01231877
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf02940921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037915995
    83 https://doi.org/10.1007/bf02940921
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf02951847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050531234
    86 https://doi.org/10.1007/bf02951847
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/s11232-007-0049-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028110868
    89 https://doi.org/10.1007/s11232-007-0049-5
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/b978-044488355-1/50016-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029853290
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/b978-044488355-1/50021-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009527534
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1088/0305-4470/39/2/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028113054
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/revmodphys.65.803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839301
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1512/iumj.1968.17.17004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067510923
    100 rdf:type schema:CreativeWork
    101 https://www.grid.ac/institutes/grid.462068.e schema:alternateName Franche Comté Électronique Mécanique Thermique et Optique Sciences et Technologies
    102 schema:name Département LPMO, Institut FEMTO-ST, CNRS, Besançon, France
    103 rdf:type schema:Organization
    104 https://www.grid.ac/institutes/grid.493212.f schema:alternateName Astronomical Institute
    105 schema:name Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica, Slovak Republic
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...