Projective line over the finite quotient ring GF(2)[x]/〈x3 − x〉 and quantum entanglement: Theoretical background View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-04

AUTHORS

M. Saniga, M. Planat

ABSTRACT

We consider the projective line over the finite quotient ring R⋄ ≡ GF(2)[x]/〈x3 − x〉. The line is endowed with 18 points, spanning the neighborhoods of three pairwise distant points. Because R⋄ is not a local ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint families under the reduction modulo either of the two maximal ideals of the ring. Two of the families contain four points each, and they swap their roles when switching from one ideal to the other, the points in one family merging with (the image of) the point in question and the points in the other family passing in pairs into the remaining two points of the associated ordinary projective line of order two. The single point in the remaining family passes to the reference point under both maps, and its existence stems from a nontrivial character of the Jacobson radical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{J}_\diamondsuit $$ \end{document} of the ring. The quotient ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde R_\diamondsuit \equiv {{R_\diamondsuit } \mathord{\left/ {\vphantom {{R_\diamondsuit } {\mathcal{J}_\diamondsuit }}} \right. \kern-\nulldelimiterspace} {\mathcal{J}_\diamondsuit }}$$ \end{document} is isomorphic to GF(2) ⊗ GF(2). The projective line over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde R_\diamondsuit $$ \end{document} features nine points, each of them surrounded by four neighbors and four distant points, and any two distant points share two neighbors. We surmise that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will discuss in detail in Part II of this paper. More... »

PAGES

474-481

References to SciGraph publications

  • 1923-12. Die natürliche Geometrie in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • 2007-05. Projective line over the finite quotient ring GF(2)[x]/〈x3 ™ x〉 and quantum entanglement: The Mermin “magic” square/pentagram in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1991-11. Literature on geometry over rings in JOURNAL OF GEOMETRY
  • 1981-09. Projective planes over rings of stable rank 2 in GEOMETRIAE DEDICATA
  • 2000-12. Projective representations i. projective lines over rings in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y

    DOI

    http://dx.doi.org/10.1007/s11232-007-0035-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015916706


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Astronomical Institute, Slovak Academy of Sciences, Tatransk\u00e1 Lomnica, Slovak Republic", 
              "id": "http://www.grid.ac/institutes/grid.493212.f", 
              "name": [
                "Astronomical Institute, Slovak Academy of Sciences, Tatransk\u00e1 Lomnica, Slovak Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saniga", 
            "givenName": "M.", 
            "id": "sg:person.015610617470.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610617470.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "D\u00e9partement LPMO, Institut FEMTO-ST, CNRS, Besan\u00e7on, France", 
              "id": "http://www.grid.ac/institutes/grid.462068.e", 
              "name": [
                "D\u00e9partement LPMO, Institut FEMTO-ST, CNRS, Besan\u00e7on, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Planat", 
            "givenName": "M.", 
            "id": "sg:person.016076407625.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076407625.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00149352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002392354", 
              "https://doi.org/10.1007/bf00149352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02951847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050531234", 
              "https://doi.org/10.1007/bf02951847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009445481", 
              "https://doi.org/10.1007/bf01231877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02940921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037915995", 
              "https://doi.org/10.1007/bf02940921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-007-0049-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028110868", 
              "https://doi.org/10.1007/s11232-007-0049-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-04", 
        "datePublishedReg": "2007-04-01", 
        "description": "We consider the projective line over the finite quotient ring R\u22c4 \u2261 GF(2)[x]/\u3008x3 \u2212 x\u3009. The line is endowed with 18 points, spanning the neighborhoods of three pairwise distant points. Because R\u22c4 is not a local ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint families under the reduction modulo either of the two maximal ideals of the ring. Two of the families contain four points each, and they swap their roles when switching from one ideal to the other, the points in one family merging with (the image of) the point in question and the points in the other family passing in pairs into the remaining two points of the associated ordinary projective line of order two. The single point in the remaining family passes to the reference point under both maps, and its existence stems from a nontrivial character of the Jacobson radical \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\mathcal{J}_\\diamondsuit  $$\n\\end{document} of the ring. The quotient ring \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\tilde R_\\diamondsuit   \\equiv {{R_\\diamondsuit  } \\mathord{\\left/ {\\vphantom {{R_\\diamondsuit  } {\\mathcal{J}_\\diamondsuit  }}} \\right. \\kern-\\nulldelimiterspace} {\\mathcal{J}_\\diamondsuit  }}$$\n\\end{document} is isomorphic to GF(2) \u2297 GF(2). The projective line over \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\tilde R_\\diamondsuit  $$\n\\end{document} features nine points, each of them surrounded by four neighbors and four distant points, and any two distant points share two neighbors. We surmise that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will discuss in detail in Part II of this paper.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11232-007-0035-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "2305-3135"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "151"
          }
        ], 
        "keywords": [
          "ideal", 
          "neighbor relations", 
          "family", 
          "relation", 
          "reference point", 
          "theoretical background", 
          "neighborhood", 
          "neighbors", 
          "questions", 
          "state", 
          "point", 
          "entanglement", 
          "background", 
          "character", 
          "role", 
          "Part II", 
          "paper", 
          "two", 
          "existence", 
          "lines", 
          "Jacobson", 
          "set", 
          "single point", 
          "maps", 
          "detail", 
          "distant points", 
          "equivalence relation", 
          "pairs", 
          "modulo", 
          "order two", 
          "ring", 
          "geometry", 
          "quantum entanglement", 
          "projective line", 
          "quotient ring", 
          "local ring", 
          "set of neighbors", 
          "disjoint families", 
          "reduction modulo", 
          "maximal ideal", 
          "nontrivial character", 
          "ring geometry", 
          "qubit states", 
          "finite quotient ring", 
          "pairwise distant points", 
          "ordinary projective line", 
          "remarkable ring geometries"
        ], 
        "name": "Projective line over the finite quotient ring GF(2)[x]/\u3008x3 \u2212 x\u3009 and quantum entanglement: Theoretical background", 
        "pagination": "474-481", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015916706"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11232-007-0035-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11232-007-0035-y", 
          "https://app.dimensions.ai/details/publication/pub.1015916706"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_451.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11232-007-0035-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11232-007-0035-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    135 TRIPLES      22 PREDICATES      78 URIs      65 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11232-007-0035-y schema:about anzsrc-for:01
    2 anzsrc-for:02
    3 schema:author Nd699057f62a048bb9d2c8d5f8e53851e
    4 schema:citation sg:pub.10.1007/bf00149352
    5 sg:pub.10.1007/bf01231877
    6 sg:pub.10.1007/bf02940921
    7 sg:pub.10.1007/bf02951847
    8 sg:pub.10.1007/s11232-007-0049-5
    9 schema:datePublished 2007-04
    10 schema:datePublishedReg 2007-04-01
    11 schema:description We consider the projective line over the finite quotient ring R⋄ ≡ GF(2)[x]/〈x3 − x〉. The line is endowed with 18 points, spanning the neighborhoods of three pairwise distant points. Because R⋄ is not a local ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint families under the reduction modulo either of the two maximal ideals of the ring. Two of the families contain four points each, and they swap their roles when switching from one ideal to the other, the points in one family merging with (the image of) the point in question and the points in the other family passing in pairs into the remaining two points of the associated ordinary projective line of order two. The single point in the remaining family passes to the reference point under both maps, and its existence stems from a nontrivial character of the Jacobson radical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{J}_\diamondsuit $$ \end{document} of the ring. The quotient ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde R_\diamondsuit \equiv {{R_\diamondsuit } \mathord{\left/ {\vphantom {{R_\diamondsuit } {\mathcal{J}_\diamondsuit }}} \right. \kern-\nulldelimiterspace} {\mathcal{J}_\diamondsuit }}$$ \end{document} is isomorphic to GF(2) ⊗ GF(2). The projective line over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde R_\diamondsuit $$ \end{document} features nine points, each of them surrounded by four neighbors and four distant points, and any two distant points share two neighbors. We surmise that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will discuss in detail in Part II of this paper.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N895a3a55c4514a23935b28b01ad5d195
    16 Nf143632d84334b80b6e636665204aa63
    17 sg:journal.1327888
    18 schema:keywords Jacobson
    19 Part II
    20 background
    21 character
    22 detail
    23 disjoint families
    24 distant points
    25 entanglement
    26 equivalence relation
    27 existence
    28 family
    29 finite quotient ring
    30 geometry
    31 ideal
    32 lines
    33 local ring
    34 maps
    35 maximal ideal
    36 modulo
    37 neighbor relations
    38 neighborhood
    39 neighbors
    40 nontrivial character
    41 order two
    42 ordinary projective line
    43 pairs
    44 pairwise distant points
    45 paper
    46 point
    47 projective line
    48 quantum entanglement
    49 qubit states
    50 questions
    51 quotient ring
    52 reduction modulo
    53 reference point
    54 relation
    55 remarkable ring geometries
    56 ring
    57 ring geometry
    58 role
    59 set
    60 set of neighbors
    61 single point
    62 state
    63 theoretical background
    64 two
    65 schema:name Projective line over the finite quotient ring GF(2)[x]/〈x3 − x〉 and quantum entanglement: Theoretical background
    66 schema:pagination 474-481
    67 schema:productId N2b8b574a11e74aec866e72816e1fd5c8
    68 N92c2130f5dcd4ce8828a88d7ecb5e3cd
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015916706
    70 https://doi.org/10.1007/s11232-007-0035-y
    71 schema:sdDatePublished 2021-11-01T18:10
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher Nbc9f19c518ec4e899e84c47cae3e8d59
    74 schema:url https://doi.org/10.1007/s11232-007-0035-y
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N2b8b574a11e74aec866e72816e1fd5c8 schema:name doi
    79 schema:value 10.1007/s11232-007-0035-y
    80 rdf:type schema:PropertyValue
    81 N56931668fe84467cb4a2bc145017ac6c rdf:first sg:person.016076407625.27
    82 rdf:rest rdf:nil
    83 N895a3a55c4514a23935b28b01ad5d195 schema:volumeNumber 151
    84 rdf:type schema:PublicationVolume
    85 N92c2130f5dcd4ce8828a88d7ecb5e3cd schema:name dimensions_id
    86 schema:value pub.1015916706
    87 rdf:type schema:PropertyValue
    88 Nbc9f19c518ec4e899e84c47cae3e8d59 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 Nd699057f62a048bb9d2c8d5f8e53851e rdf:first sg:person.015610617470.96
    91 rdf:rest N56931668fe84467cb4a2bc145017ac6c
    92 Nf143632d84334b80b6e636665204aa63 schema:issueNumber 1
    93 rdf:type schema:PublicationIssue
    94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Mathematical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Physical Sciences
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1327888 schema:issn 0040-5779
    101 2305-3135
    102 schema:name Theoretical and Mathematical Physics
    103 schema:publisher Springer Nature
    104 rdf:type schema:Periodical
    105 sg:person.015610617470.96 schema:affiliation grid-institutes:grid.493212.f
    106 schema:familyName Saniga
    107 schema:givenName M.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610617470.96
    109 rdf:type schema:Person
    110 sg:person.016076407625.27 schema:affiliation grid-institutes:grid.462068.e
    111 schema:familyName Planat
    112 schema:givenName M.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076407625.27
    114 rdf:type schema:Person
    115 sg:pub.10.1007/bf00149352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002392354
    116 https://doi.org/10.1007/bf00149352
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf01231877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009445481
    119 https://doi.org/10.1007/bf01231877
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf02940921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037915995
    122 https://doi.org/10.1007/bf02940921
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf02951847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050531234
    125 https://doi.org/10.1007/bf02951847
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s11232-007-0049-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028110868
    128 https://doi.org/10.1007/s11232-007-0049-5
    129 rdf:type schema:CreativeWork
    130 grid-institutes:grid.462068.e schema:alternateName Département LPMO, Institut FEMTO-ST, CNRS, Besançon, France
    131 schema:name Département LPMO, Institut FEMTO-ST, CNRS, Besançon, France
    132 rdf:type schema:Organization
    133 grid-institutes:grid.493212.f schema:alternateName Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica, Slovak Republic
    134 schema:name Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica, Slovak Republic
    135 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...