2017-03-23
AUTHORSNira Dyn, Elza Farkhi, Alona Mokhov
ABSTRACTThis paper introduces a new integral of univariate set-valued functions of bounded variation with compact images in ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb {R}}^d$\end{document}. The new integral, termed the metric integral, is defined using metric linear combinations of sets and is shown to consist of integrals of all the metric selections of the integrated multifunction. The metric integral is a subset of the Aumann integral, but in contrast to the latter, it is not necessarily convex. For a special class of segment functions equality of the two integrals is shown. Properties of the metric selections and related properties of the metric integral are studied. Several indicative examples are presented. More... »
PAGES867-885
http://scigraph.springernature.com/pub.10.1007/s11228-017-0403-1
DOIhttp://dx.doi.org/10.1007/s11228-017-0403-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1084030396
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Mathematical Sciences, Tel-Aviv University, Tel Aviv, Israel",
"id": "http://www.grid.ac/institutes/grid.12136.37",
"name": [
"School of Mathematical Sciences, Tel-Aviv University, Tel Aviv, Israel"
],
"type": "Organization"
},
"familyName": "Dyn",
"givenName": "Nira",
"id": "sg:person.012320171046.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320171046.95"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.425011.3",
"name": [
"School of Mathematical Sciences, Tel-Aviv University, Tel Aviv, Israel",
"Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Farkhi",
"givenName": "Elza",
"id": "sg:person.015551401701.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015551401701.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Unit of Mathematics, Afeka, Tel-Aviv Academic College of Engineering, Tel Aviv, Israel",
"id": "http://www.grid.ac/institutes/grid.488382.d",
"name": [
"Unit of Mathematics, Afeka, Tel-Aviv Academic College of Engineering, Tel Aviv, Israel"
],
"type": "Organization"
},
"familyName": "Mokhov",
"givenName": "Alona",
"id": "sg:person.012471410107.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471410107.54"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00365-006-0632-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038192037",
"https://doi.org/10.1007/s00365-006-0632-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-02431-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008570186",
"https://doi.org/10.1007/978-3-642-02431-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11228-006-0038-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009006778",
"https://doi.org/10.1007/s11228-006-0038-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-03-23",
"datePublishedReg": "2017-03-23",
"description": "This paper introduces a new integral of univariate set-valued functions of bounded variation with compact images in \u211dd\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\mathbb {R}}^d$\\end{document}. The new integral, termed the metric integral, is defined using metric linear combinations of sets and is shown to consist of integrals of all the metric selections of the integrated multifunction. The metric integral is a subset of the Aumann integral, but in contrast to the latter, it is not necessarily convex. For a special class of segment functions equality of the two integrals is shown. Properties of the metric selections and related properties of the metric integral are studied. Several indicative examples are presented.",
"genre": "article",
"id": "sg:pub.10.1007/s11228-017-0403-1",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136679",
"issn": [
"1877-0533",
"1877-0541"
],
"name": "Set-Valued and Variational Analysis",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "26"
}
],
"keywords": [
"subset",
"function",
"contrast",
"combination",
"selection",
"variation",
"images",
"class",
"properties",
"set",
"metric selection",
"new integral",
"set-valued functions",
"example",
"linear combination",
"Aumann integral",
"special class",
"integrals",
"compact image",
"equality",
"related properties",
"multifunction",
"indicative examples",
"paper"
],
"name": "The Metric Integral of Set-Valued Functions",
"pagination": "867-885",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1084030396"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11228-017-0403-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11228-017-0403-1",
"https://app.dimensions.ai/details/publication/pub.1084030396"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_749.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11228-017-0403-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11228-017-0403-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11228-017-0403-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11228-017-0403-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11228-017-0403-1'
This table displays all metadata directly associated to this object as RDF triples.
114 TRIPLES
21 PREDICATES
51 URIs
40 LITERALS
6 BLANK NODES