Hybrid approach of parallel implementation on CPU–GPU for high-speed ECDSA verification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-10

AUTHORS

Sokjoon Lee, Hwajeong Seo, Hyeokchan Kwon, Hyunsoo Yoon

ABSTRACT

Since the advent of deep belief network deep learning technology in 2006, artificial intelligence technology has been utilized in various convergence areas, such as autonomous driving and medical care. Some services requiring fast decision making and action typically work seamlessly with edge computing service model. In autonomous driving of a connected vehicle with vehicle-to-everything (V2X) communication, roadside unit (RSU) acts as an edge computing device and it will make safer service by processing V2X messages fast, sent by vehicles or other devices. IEEE 1609.2 standard provides application message security technology to ensure the security and reliability of vehicle-to-vehicle communication messages. It uses elliptic curve digital signature algorithm (ECDSA) signatures based on the NIST p256 curve for message authenticity. In this paper, we investigate that RSU should be able to verify 3500 ECDSA signatures per second considering the expected maximum number of vehicles on nearby roads (e.g., during rush hour), message transmission rate, and IEEE 802.11p wireless channel capacity. RSU should satisfy this requirement without assistance of hardware-based cryptographic accelerator. For the requirement, we propose a hybrid approach of parallel ECDSA signature verification at high speed by using CPU and GPU, simultaneously. Moreover, we implemented the proposed method in various modern computing environments for RSU and edge computing devices. Through the experiments, we reach the conclusion that GPU can contribute to the required performance of ECDSA signature verification in RSU platform, which could not satisfy the above throughput only with CPU unit. The target platform with Intel Pentium E6500 CPU and GeForce GTX650 GPU can verify 5668 signatures per second with 30% utilization, while CPU in the platform can process only 2640 signatures. Even in a higher-performance edge computing device, we examine experimentally that the performance can be further improved by using the proposed hybrid approach. More... »

PAGES

1-21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11227-019-02744-6

DOI

http://dx.doi.org/10.1007/s11227-019-02744-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111317753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Electronics and Telecommunications Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.36303.35", 
          "name": [
            "School of computing, KAIST, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Korea", 
            "Information Security Research Division, ETRI, 218 Gajeong-ro, Yuseong-gu, 34129, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sokjoon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hansung University", 
          "id": "https://www.grid.ac/institutes/grid.444079.a", 
          "name": [
            "Department of IT, Hansung University, 116 Samseongyoro-16gil, Seongbuk-gu, 02876, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Hwajeong", 
        "id": "sg:person.015101423711.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101423711.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electronics and Telecommunications Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.36303.35", 
          "name": [
            "Information Security Research Division, ETRI, 218 Gajeong-ro, Yuseong-gu, 34129, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Hyeokchan", 
        "id": "sg:person.013470301737.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013470301737.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "School of computing, KAIST, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Hyunsoo", 
        "id": "sg:person.010023517660.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010023517660.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/neco.2006.18.7.1527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004707137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45353-9_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021281712", 
          "https://doi.org/10.1007/3-540-45353-9_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030517994", 
          "https://doi.org/10.1038/nature14236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11745853_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030714294", 
          "https://doi.org/10.1007/11745853_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11745853_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030714294", 
          "https://doi.org/10.1007/11745853_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-43414-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033316235", 
          "https://doi.org/10.1007/978-3-662-43414-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035788679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039427823", 
          "https://doi.org/10.1038/nature16961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28632-5_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040960314", 
          "https://doi.org/10.1007/978-3-540-28632-5_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28632-5_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040960314", 
          "https://doi.org/10.1007/978-3-540-28632-5_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85053-3_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051927548", 
          "https://doi.org/10.1007/978-3-540-85053-3_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comst.2015.2388550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061258273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jiot.2014.2323395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061280666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jiot.2016.2579198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061280871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2017.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061389404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2010.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2012.2205597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061423808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdsc.2016.2577022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061585617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvlsi.2016.2557965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061817843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2015.2487832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061823367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comst.2017.2682318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084202545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1555343417695197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084247556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1555343417695197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084247556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13673-017-0092-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252702", 
          "https://doi.org/10.1186/s13673-017-0092-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13673-017-0092-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252702", 
          "https://doi.org/10.1186/s13673-017-0092-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4218/etrij.17.2816.0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084456179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3745/jips.04.0029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085350041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13673-017-0116-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091630354", 
          "https://doi.org/10.1186/s13673-017-0116-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2017.2756680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091965219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093359587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vtcspring.2017.8108455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093485002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcn.2010.5735781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093720371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094145536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6638947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095157363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p14-5010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099127825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p14-5010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099127825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13677-017-0097-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099734313", 
          "https://doi.org/10.1186/s13677-017-0097-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11036-018-1019-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100746209", 
          "https://doi.org/10.1007/s11036-018-1019-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vnc.2017.8275638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100767836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s18041195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103237698"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-10", 
    "datePublishedReg": "2019-01-10", 
    "description": "Since the advent of deep belief network deep learning technology in 2006, artificial intelligence technology has been utilized in various convergence areas, such as autonomous driving and medical care. Some services requiring fast decision making and action typically work seamlessly with edge computing service model. In autonomous driving of a connected vehicle with vehicle-to-everything (V2X) communication, roadside unit (RSU) acts as an edge computing device and it will make safer service by processing V2X messages fast, sent by vehicles or other devices. IEEE 1609.2 standard provides application message security technology to ensure the security and reliability of vehicle-to-vehicle communication messages. It uses elliptic curve digital signature algorithm (ECDSA) signatures based on the NIST p256 curve for message authenticity. In this paper, we investigate that RSU should be able to verify 3500 ECDSA signatures per second considering the expected maximum number of vehicles on nearby roads (e.g., during rush hour), message transmission rate, and IEEE 802.11p wireless channel capacity. RSU should satisfy this requirement without assistance of hardware-based cryptographic accelerator. For the requirement, we propose a hybrid approach of parallel ECDSA signature verification at high speed by using CPU and GPU, simultaneously. Moreover, we implemented the proposed method in various modern computing environments for RSU and edge computing devices. Through the experiments, we reach the conclusion that GPU can contribute to the required performance of ECDSA signature verification in RSU platform, which could not satisfy the above throughput only with CPU unit. The target platform with Intel Pentium E6500 CPU and GeForce GTX650 GPU can verify 5668 signatures per second with 30% utilization, while CPU in the platform can process only 2640 signatures. Even in a higher-performance edge computing device, we examine experimentally that the performance can be further improved by using the proposed hybrid approach.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11227-019-02744-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1133522", 
        "issn": [
          "0920-8542", 
          "1573-0484"
        ], 
        "name": "The Journal of Supercomputing", 
        "type": "Periodical"
      }
    ], 
    "name": "Hybrid approach of parallel implementation on CPU\u2013GPU for high-speed ECDSA verification", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "384788276228eca193e00ae8016b8c3ddd1c6513dde0ae50d3bddb9251354a4c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11227-019-02744-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111317753"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11227-019-02744-6", 
      "https://app.dimensions.ai/details/publication/pub.1111317753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6316_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11227-019-02744-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11227-019-02744-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11227-019-02744-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11227-019-02744-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11227-019-02744-6'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      59 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11227-019-02744-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2963af6baa7f440597a911f25b2a3028
4 schema:citation sg:pub.10.1007/11745853_14
5 sg:pub.10.1007/3-540-45353-9_19
6 sg:pub.10.1007/978-3-540-28632-5_11
7 sg:pub.10.1007/978-3-540-85053-3_5
8 sg:pub.10.1007/978-3-662-43414-7_21
9 sg:pub.10.1007/s11036-018-1019-x
10 sg:pub.10.1038/nature14236
11 sg:pub.10.1038/nature16961
12 sg:pub.10.1186/s13673-017-0092-7
13 sg:pub.10.1186/s13673-017-0116-3
14 sg:pub.10.1186/s13677-017-0097-9
15 https://doi.org/10.1109/comst.2015.2388550
16 https://doi.org/10.1109/comst.2017.2682318
17 https://doi.org/10.1109/cvpr.2016.90
18 https://doi.org/10.1109/icassp.2013.6638947
19 https://doi.org/10.1109/iccv.2015.312
20 https://doi.org/10.1109/jiot.2014.2323395
21 https://doi.org/10.1109/jiot.2016.2579198
22 https://doi.org/10.1109/lcn.2010.5735781
23 https://doi.org/10.1109/mc.2017.9
24 https://doi.org/10.1109/mcse.2010.69
25 https://doi.org/10.1109/msp.2012.2205597
26 https://doi.org/10.1109/tcsii.2017.2756680
27 https://doi.org/10.1109/tdsc.2016.2577022
28 https://doi.org/10.1109/tvlsi.2016.2557965
29 https://doi.org/10.1109/tvt.2015.2487832
30 https://doi.org/10.1109/vnc.2017.8275638
31 https://doi.org/10.1109/vtcspring.2017.8108455
32 https://doi.org/10.1145/1390156.1390177
33 https://doi.org/10.1162/neco.2006.18.7.1527
34 https://doi.org/10.1177/1555343417695197
35 https://doi.org/10.3115/v1/p14-5010
36 https://doi.org/10.3390/s18041195
37 https://doi.org/10.3745/jips.04.0029
38 https://doi.org/10.4218/etrij.17.2816.0009
39 schema:datePublished 2019-01-10
40 schema:datePublishedReg 2019-01-10
41 schema:description Since the advent of deep belief network deep learning technology in 2006, artificial intelligence technology has been utilized in various convergence areas, such as autonomous driving and medical care. Some services requiring fast decision making and action typically work seamlessly with edge computing service model. In autonomous driving of a connected vehicle with vehicle-to-everything (V2X) communication, roadside unit (RSU) acts as an edge computing device and it will make safer service by processing V2X messages fast, sent by vehicles or other devices. IEEE 1609.2 standard provides application message security technology to ensure the security and reliability of vehicle-to-vehicle communication messages. It uses elliptic curve digital signature algorithm (ECDSA) signatures based on the NIST p256 curve for message authenticity. In this paper, we investigate that RSU should be able to verify 3500 ECDSA signatures per second considering the expected maximum number of vehicles on nearby roads (e.g., during rush hour), message transmission rate, and IEEE 802.11p wireless channel capacity. RSU should satisfy this requirement without assistance of hardware-based cryptographic accelerator. For the requirement, we propose a hybrid approach of parallel ECDSA signature verification at high speed by using CPU and GPU, simultaneously. Moreover, we implemented the proposed method in various modern computing environments for RSU and edge computing devices. Through the experiments, we reach the conclusion that GPU can contribute to the required performance of ECDSA signature verification in RSU platform, which could not satisfy the above throughput only with CPU unit. The target platform with Intel Pentium E6500 CPU and GeForce GTX650 GPU can verify 5668 signatures per second with 30% utilization, while CPU in the platform can process only 2640 signatures. Even in a higher-performance edge computing device, we examine experimentally that the performance can be further improved by using the proposed hybrid approach.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf sg:journal.1133522
46 schema:name Hybrid approach of parallel implementation on CPU–GPU for high-speed ECDSA verification
47 schema:pagination 1-21
48 schema:productId N02bebcfae7fc48ba93d1d31e7aea8f22
49 N43386f522c9441f198aa1e6876564c85
50 Naf9ab7f6cbe1407a95dbc8c0c473e5ef
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111317753
52 https://doi.org/10.1007/s11227-019-02744-6
53 schema:sdDatePublished 2019-04-11T08:37
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nbe0a9b72fc094681a12e38baad18498b
56 schema:url https://link.springer.com/10.1007%2Fs11227-019-02744-6
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N02bebcfae7fc48ba93d1d31e7aea8f22 schema:name doi
61 schema:value 10.1007/s11227-019-02744-6
62 rdf:type schema:PropertyValue
63 N2963af6baa7f440597a911f25b2a3028 rdf:first Ne6a90f3fa05f490ba32940af7eac7d3e
64 rdf:rest N6c8af52f3ccb4d51b9f42dc097b2cece
65 N43386f522c9441f198aa1e6876564c85 schema:name dimensions_id
66 schema:value pub.1111317753
67 rdf:type schema:PropertyValue
68 N6c8af52f3ccb4d51b9f42dc097b2cece rdf:first sg:person.015101423711.26
69 rdf:rest N844b9ac81fc449ef898feecb6bfe90f4
70 N844b9ac81fc449ef898feecb6bfe90f4 rdf:first sg:person.013470301737.02
71 rdf:rest Nfebcc30024b44efcb47ad724abb9a312
72 Naf9ab7f6cbe1407a95dbc8c0c473e5ef schema:name readcube_id
73 schema:value 384788276228eca193e00ae8016b8c3ddd1c6513dde0ae50d3bddb9251354a4c
74 rdf:type schema:PropertyValue
75 Nbe0a9b72fc094681a12e38baad18498b schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Ne6a90f3fa05f490ba32940af7eac7d3e schema:affiliation https://www.grid.ac/institutes/grid.36303.35
78 schema:familyName Lee
79 schema:givenName Sokjoon
80 rdf:type schema:Person
81 Nfebcc30024b44efcb47ad724abb9a312 rdf:first sg:person.010023517660.17
82 rdf:rest rdf:nil
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:journal.1133522 schema:issn 0920-8542
90 1573-0484
91 schema:name The Journal of Supercomputing
92 rdf:type schema:Periodical
93 sg:person.010023517660.17 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
94 schema:familyName Yoon
95 schema:givenName Hyunsoo
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010023517660.17
97 rdf:type schema:Person
98 sg:person.013470301737.02 schema:affiliation https://www.grid.ac/institutes/grid.36303.35
99 schema:familyName Kwon
100 schema:givenName Hyeokchan
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013470301737.02
102 rdf:type schema:Person
103 sg:person.015101423711.26 schema:affiliation https://www.grid.ac/institutes/grid.444079.a
104 schema:familyName Seo
105 schema:givenName Hwajeong
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101423711.26
107 rdf:type schema:Person
108 sg:pub.10.1007/11745853_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030714294
109 https://doi.org/10.1007/11745853_14
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/3-540-45353-9_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021281712
112 https://doi.org/10.1007/3-540-45353-9_19
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-540-28632-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040960314
115 https://doi.org/10.1007/978-3-540-28632-5_11
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-540-85053-3_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051927548
118 https://doi.org/10.1007/978-3-540-85053-3_5
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-662-43414-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033316235
121 https://doi.org/10.1007/978-3-662-43414-7_21
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11036-018-1019-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100746209
124 https://doi.org/10.1007/s11036-018-1019-x
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nature14236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030517994
127 https://doi.org/10.1038/nature14236
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature16961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039427823
130 https://doi.org/10.1038/nature16961
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/s13673-017-0092-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252702
133 https://doi.org/10.1186/s13673-017-0092-7
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/s13673-017-0116-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091630354
136 https://doi.org/10.1186/s13673-017-0116-3
137 rdf:type schema:CreativeWork
138 sg:pub.10.1186/s13677-017-0097-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099734313
139 https://doi.org/10.1186/s13677-017-0097-9
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/comst.2015.2388550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061258273
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/comst.2017.2682318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084202545
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/cvpr.2016.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093359587
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/icassp.2013.6638947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095157363
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iccv.2015.312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094145536
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/jiot.2014.2323395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061280666
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/jiot.2016.2579198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061280871
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/lcn.2010.5735781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093720371
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/mc.2017.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061389404
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/mcse.2010.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398414
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/msp.2012.2205597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423808
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tcsii.2017.2756680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091965219
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tdsc.2016.2577022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061585617
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tvlsi.2016.2557965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061817843
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tvt.2015.2487832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061823367
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/vnc.2017.8275638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100767836
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/vtcspring.2017.8108455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093485002
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1145/1390156.1390177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035788679
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1162/neco.2006.18.7.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004707137
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1177/1555343417695197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084247556
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3115/v1/p14-5010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099127825
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3390/s18041195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103237698
184 rdf:type schema:CreativeWork
185 https://doi.org/10.3745/jips.04.0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085350041
186 rdf:type schema:CreativeWork
187 https://doi.org/10.4218/etrij.17.2816.0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084456179
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.36303.35 schema:alternateName Electronics and Telecommunications Research Institute
190 schema:name Information Security Research Division, ETRI, 218 Gajeong-ro, Yuseong-gu, 34129, Daejeon, Korea
191 School of computing, KAIST, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Korea
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.37172.30 schema:alternateName Korea Advanced Institute of Science and Technology
194 schema:name School of computing, KAIST, 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Korea
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.444079.a schema:alternateName Hansung University
197 schema:name Department of IT, Hansung University, 116 Samseongyoro-16gil, Seongbuk-gu, 02876, Seoul, Korea
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...