On parallel computation of centrality measures of graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Juan F. García, M. V. Carriegos

ABSTRACT

Centrality measures or indicators of centrality identify most relevant nodes of graphs. Although optimized algorithms exist for computing of most of them, they are still time consuming and are even infeasible to apply to big enough graphs like the ones representing social networks or extensive enough computer networks. In this paper, we present a parallel implementation in C language of some optimal algorithms for computing of some indicators of centrality. Our parallel version greatly reduces the execution time of their sequential (non-parallel) counterpart. The proposed solution relies on threading, allowing for a theoretical improvement in performance close to the number of logical processors (cores) of the single computer in which it is running. Our software has been tested in several platforms, including the supercomputer Calendula, in which we achieved execution times close to 18 times faster when running our parallel implementation instead of our sequential one. Our solution is multi-platform and portable, working on any machine with several logical processor which is capable of compiling and running C language code. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11227-018-2654-5

DOI

http://dx.doi.org/10.1007/s11227-018-2654-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107880749


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "RIASC. Instituto CC. Aplicadas a Ciberseguridad, Universidad de Le\u00f3n, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda", 
        "givenName": "Juan F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "RIASC. Instituto CC. Aplicadas a Ciberseguridad, Universidad de Le\u00f3n, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carriegos", 
        "givenName": "M. V.", 
        "id": "sg:person.014432353021.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014432353021.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-36574-5_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000859752", 
          "https://doi.org/10.1007/3-540-36574-5_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/367766.368168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000891687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2013.05.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002051236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.parco.2008.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005307326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jpdc.1994.1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012821948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02592101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014818409", 
          "https://doi.org/10.1007/bf02592101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02592101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014818409", 
          "https://doi.org/10.1007/bf02592101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601602103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016125157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0010232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017414104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0022250x.2001.9990249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032164704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1465482.1465560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041113372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041716633", 
          "https://doi.org/10.1007/bf01386390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2011.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044788769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.socnet.2007.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045034028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2458523.2458531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045765726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047965046", 
          "https://doi.org/10.1186/1471-2105-12-149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1816038.1816021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048324140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0055823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049307808", 
          "https://doi.org/10.1007/bfb0055823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051171362", 
          "https://doi.org/10.1007/bf02289026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051171362", 
          "https://doi.org/10.1007/bf02289026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/12.21127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061087465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/12.752657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061088954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/26.310604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061136500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127407018403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062955118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/357783.331677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063168968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972818.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sc.2014.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093201880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hipc.2010.5713180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093316114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpp.2006.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093691855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iiswc.2011.6114208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094242531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdps.2009.5161100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094244584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdps.2014.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094313551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/socialcom-passat.2012.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095072981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pact.1998.727266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095080350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpp.2009.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095222246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asonam.2012.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095280540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdps.2008.4536261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095642719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/math-2018-0059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105159242"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Centrality measures or indicators of centrality identify most relevant nodes of graphs. Although optimized algorithms exist for computing of most of them, they are still time consuming and are even infeasible to apply to big enough graphs like the ones representing social networks or extensive enough computer networks. In this paper, we present a parallel implementation in C language of some optimal algorithms for computing of some indicators of centrality. Our parallel version greatly reduces the execution time of their sequential (non-parallel) counterpart. The proposed solution relies on threading, allowing for a theoretical improvement in performance close to the number of logical processors (cores) of the single computer in which it is running. Our software has been tested in several platforms, including the supercomputer Calendula, in which we achieved execution times close to 18 times faster when running our parallel implementation instead of our sequential one. Our solution is multi-platform and portable, working on any machine with several logical processor which is capable of compiling and running C language code.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11227-018-2654-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1133522", 
        "issn": [
          "0920-8542", 
          "1573-0484"
        ], 
        "name": "The Journal of Supercomputing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "On parallel computation of centrality measures of graphs", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "668e0b619ee9185c80a453821d2c914441d801b9e9985dcd040f43733d30ee91"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11227-018-2654-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107880749"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11227-018-2654-5", 
      "https://app.dimensions.ai/details/publication/pub.1107880749"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117087_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11227-018-2654-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11227-018-2654-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11227-018-2654-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11227-018-2654-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11227-018-2654-5'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11227-018-2654-5 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Nb4740674e1d44a0981fcd06ec703a00a
4 schema:citation sg:pub.10.1007/3-540-36574-5_10
5 sg:pub.10.1007/bf01386390
6 sg:pub.10.1007/bf02289026
7 sg:pub.10.1007/bf02592101
8 sg:pub.10.1007/bfb0055823
9 sg:pub.10.1186/1471-2105-12-149
10 https://doi.org/10.1006/jpdc.1994.1099
11 https://doi.org/10.1016/j.ins.2011.12.016
12 https://doi.org/10.1016/j.parco.2008.04.002
13 https://doi.org/10.1016/j.procs.2013.05.203
14 https://doi.org/10.1016/j.socnet.2007.04.002
15 https://doi.org/10.1073/pnas.0601602103
16 https://doi.org/10.1080/0022250x.2001.9990249
17 https://doi.org/10.1109/12.21127
18 https://doi.org/10.1109/12.752657
19 https://doi.org/10.1109/26.310604
20 https://doi.org/10.1109/asonam.2012.79
21 https://doi.org/10.1109/hipc.2010.5713180
22 https://doi.org/10.1109/icpp.2006.57
23 https://doi.org/10.1109/icpp.2009.53
24 https://doi.org/10.1109/iiswc.2011.6114208
25 https://doi.org/10.1109/ipdps.2008.4536261
26 https://doi.org/10.1109/ipdps.2009.5161100
27 https://doi.org/10.1109/ipdps.2014.45
28 https://doi.org/10.1109/pact.1998.727266
29 https://doi.org/10.1109/sc.2014.52
30 https://doi.org/10.1109/socialcom-passat.2012.37
31 https://doi.org/10.1137/1.9781611972818.11
32 https://doi.org/10.1142/s0218127407018403
33 https://doi.org/10.1145/1465482.1465560
34 https://doi.org/10.1145/1816038.1816021
35 https://doi.org/10.1145/2458523.2458531
36 https://doi.org/10.1145/357783.331677
37 https://doi.org/10.1145/367766.368168
38 https://doi.org/10.1371/journal.pone.0010232
39 https://doi.org/10.1515/math-2018-0059
40 schema:datePublished 2019-03
41 schema:datePublishedReg 2019-03-01
42 schema:description Centrality measures or indicators of centrality identify most relevant nodes of graphs. Although optimized algorithms exist for computing of most of them, they are still time consuming and are even infeasible to apply to big enough graphs like the ones representing social networks or extensive enough computer networks. In this paper, we present a parallel implementation in C language of some optimal algorithms for computing of some indicators of centrality. Our parallel version greatly reduces the execution time of their sequential (non-parallel) counterpart. The proposed solution relies on threading, allowing for a theoretical improvement in performance close to the number of logical processors (cores) of the single computer in which it is running. Our software has been tested in several platforms, including the supercomputer Calendula, in which we achieved execution times close to 18 times faster when running our parallel implementation instead of our sequential one. Our solution is multi-platform and portable, working on any machine with several logical processor which is capable of compiling and running C language code.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N75597ac473a344a7bc60679054ea7ad9
47 N78d2a66d18ef47bd9fdab1031b493f69
48 sg:journal.1133522
49 schema:name On parallel computation of centrality measures of graphs
50 schema:pagination 1-19
51 schema:productId N12b0a03355864b6f9f1ab4f9dbb37057
52 N42033cc015694b8b838f08261877957b
53 N62d757e781754bd39492b84e0e7c3b3f
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107880749
55 https://doi.org/10.1007/s11227-018-2654-5
56 schema:sdDatePublished 2019-04-11T14:16
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Na83e5a68682b4a07be02836ffa9e8058
59 schema:url https://link.springer.com/10.1007%2Fs11227-018-2654-5
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N12b0a03355864b6f9f1ab4f9dbb37057 schema:name doi
64 schema:value 10.1007/s11227-018-2654-5
65 rdf:type schema:PropertyValue
66 N42033cc015694b8b838f08261877957b schema:name readcube_id
67 schema:value 668e0b619ee9185c80a453821d2c914441d801b9e9985dcd040f43733d30ee91
68 rdf:type schema:PropertyValue
69 N4f021ad25f50448593c4d6d31134b34d rdf:first sg:person.014432353021.75
70 rdf:rest rdf:nil
71 N62d757e781754bd39492b84e0e7c3b3f schema:name dimensions_id
72 schema:value pub.1107880749
73 rdf:type schema:PropertyValue
74 N75597ac473a344a7bc60679054ea7ad9 schema:volumeNumber 75
75 rdf:type schema:PublicationVolume
76 N78d2a66d18ef47bd9fdab1031b493f69 schema:issueNumber 3
77 rdf:type schema:PublicationIssue
78 Na83e5a68682b4a07be02836ffa9e8058 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nb4740674e1d44a0981fcd06ec703a00a rdf:first Nb69fbf08fb664a9dbb68e4bf43569477
81 rdf:rest N4f021ad25f50448593c4d6d31134b34d
82 Nb69fbf08fb664a9dbb68e4bf43569477 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
83 schema:familyName García
84 schema:givenName Juan F.
85 rdf:type schema:Person
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
90 schema:name Computation Theory and Mathematics
91 rdf:type schema:DefinedTerm
92 sg:journal.1133522 schema:issn 0920-8542
93 1573-0484
94 schema:name The Journal of Supercomputing
95 rdf:type schema:Periodical
96 sg:person.014432353021.75 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
97 schema:familyName Carriegos
98 schema:givenName M. V.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014432353021.75
100 rdf:type schema:Person
101 sg:pub.10.1007/3-540-36574-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000859752
102 https://doi.org/10.1007/3-540-36574-5_10
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
105 https://doi.org/10.1007/bf01386390
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf02289026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051171362
108 https://doi.org/10.1007/bf02289026
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02592101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014818409
111 https://doi.org/10.1007/bf02592101
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bfb0055823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049307808
114 https://doi.org/10.1007/bfb0055823
115 rdf:type schema:CreativeWork
116 sg:pub.10.1186/1471-2105-12-149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047965046
117 https://doi.org/10.1186/1471-2105-12-149
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1006/jpdc.1994.1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012821948
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ins.2011.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044788769
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.parco.2008.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005307326
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.procs.2013.05.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002051236
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.socnet.2007.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045034028
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/0022250x.2001.9990249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032164704
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/12.21127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061087465
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/12.752657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061088954
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/26.310604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061136500
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/asonam.2012.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095280540
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/hipc.2010.5713180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093316114
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/icpp.2006.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093691855
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/icpp.2009.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095222246
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/iiswc.2011.6114208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094242531
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/ipdps.2008.4536261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095642719
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/ipdps.2009.5161100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094244584
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/ipdps.2014.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094313551
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/pact.1998.727266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095080350
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/sc.2014.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093201880
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/socialcom-passat.2012.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095072981
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1137/1.9781611972818.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800505
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1142/s0218127407018403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062955118
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1145/1465482.1465560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041113372
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/1816038.1816021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048324140
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1145/2458523.2458531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045765726
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1145/357783.331677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063168968
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1145/367766.368168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000891687
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1371/journal.pone.0010232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017414104
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1515/math-2018-0059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105159242
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.4807.b schema:alternateName University of Leon
180 schema:name RIASC. Instituto CC. Aplicadas a Ciberseguridad, Universidad de León, León, Spain
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...