An implementation of cloud-based platform with R packages for spatiotemporal analysis of air pollution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11-14

AUTHORS

Chao-Tung Yang, Yu-Wei Chan, Jung-Chun Liu, Ben-Shen Lou

ABSTRACT

Recently, the R package has become a popular tool for big data analysis due to its several matured software packages for the data analysis and visualization, including the analysis of air pollution. The air pollution problem is of increasing global concern as it has greatly impacts on the environment and human health. With the rapid development of IoT and the increase in the accuracy of geographical information collected by sensors, a huge amount of air pollution data were generated. Thus, it is difficult to analyze the air pollution data in a single machine environment effectively and reliably due to its inherent characteristic of memory design. In this work, we construct a distributed computing environment based on both the softwares of RHadoop and SparkR for performing the analysis and visualization of air pollution with the R more reliably and effectively. In the work, we firstly use the sensors, called EdiGreen AirBox to collect the air pollution data in Taichung, Taiwan. Then, we adopt the Inverse Distance Weighting method to transform the sensors’ data into the density map. Finally, the experimental results show the accuracy of the short-term prediction results of PM2.5 by using the ARIMA model. In addition, the verification with respect to the prediction accuracy with the MAPE method is also presented in the experimental results. More... »

PAGES

1-22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11227-017-2189-1

DOI

http://dx.doi.org/10.1007/s11227-017-2189-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092689631


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tunghai University", 
          "id": "https://www.grid.ac/institutes/grid.265231.1", 
          "name": [
            "Department of Computer Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, 40704, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Chao-Tung", 
        "id": "sg:person.015712700237.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015712700237.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Providence University", 
          "id": "https://www.grid.ac/institutes/grid.412550.7", 
          "name": [
            "College of Computing and Informatics, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu District, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Yu-Wei", 
        "id": "sg:person.014401756371.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014401756371.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tunghai University", 
          "id": "https://www.grid.ac/institutes/grid.265231.1", 
          "name": [
            "Department of Computer Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, 40704, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jung-Chun", 
        "id": "sg:person.012213305715.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012213305715.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tunghai University", 
          "id": "https://www.grid.ac/institutes/grid.265231.1", 
          "name": [
            "Department of Computer Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, 40704, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lou", 
        "givenName": "Ben-Shen", 
        "id": "sg:person.011631725556.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011631725556.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/15287390590936166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000812715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proenv.2016.03.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001755368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11869-011-0146-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005086029", 
          "https://doi.org/10.1007/s11869-011-0146-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2015.07.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006917973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsci.2016.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009674351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mrgentox.2014.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011917395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0341-8162(93)90039-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016621945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0341-8162(93)90039-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016621945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2016.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020917766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-069x-13-102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026428205", 
          "https://doi.org/10.1186/1476-069x-13-102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proenv.2016.03.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031488864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apr.2017.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039578445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpubh.2016.00143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040332923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-7812-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049903523", 
          "https://doi.org/10.1007/s11356-016-7812-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-7812-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049903523", 
          "https://doi.org/10.1007/s11356-016-7812-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2016.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2016.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-411643-6.00029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053102490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apr.2017.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083904515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cluster.2015.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093964107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcom.2002.1019356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095487178"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-14", 
    "datePublishedReg": "2017-11-14", 
    "description": "Recently, the R package has become a popular tool for big data analysis due to its several matured software packages for the data analysis and visualization, including the analysis of air pollution. The air pollution problem is of increasing global concern as it has greatly impacts on the environment and human health. With the rapid development of IoT and the increase in the accuracy of geographical information collected by sensors, a huge amount of air pollution data were generated. Thus, it is difficult to analyze the air pollution data in a single machine environment effectively and reliably due to its inherent characteristic of memory design. In this work, we construct a distributed computing environment based on both the softwares of RHadoop and SparkR for performing the analysis and visualization of air pollution with the R more reliably and effectively. In the work, we firstly use the sensors, called EdiGreen AirBox to collect the air pollution data in Taichung, Taiwan. Then, we adopt the Inverse Distance Weighting method to transform the sensors\u2019 data into the density map. Finally, the experimental results show the accuracy of the short-term prediction results of PM2.5 by using the ARIMA model. In addition, the verification with respect to the prediction accuracy with the MAPE method is also presented in the experimental results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11227-017-2189-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1133522", 
        "issn": [
          "0920-8542", 
          "1573-0484"
        ], 
        "name": "The Journal of Supercomputing", 
        "type": "Periodical"
      }
    ], 
    "name": "An implementation of cloud-based platform with R packages for spatiotemporal analysis of air pollution", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d8451142ffa603d7840d6e8053f6bf0205b4aec9e4dc8c1242b922b9321029a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11227-017-2189-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092689631"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11227-017-2189-1", 
      "https://app.dimensions.ai/details/publication/pub.1092689631"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11227-017-2189-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11227-017-2189-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11227-017-2189-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11227-017-2189-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11227-017-2189-1'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      42 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11227-017-2189-1 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N98b95dd6c6104fe089936371f1783ab2
4 schema:citation sg:pub.10.1007/s11356-016-7812-9
5 sg:pub.10.1007/s11869-011-0146-3
6 sg:pub.10.1186/1476-069x-13-102
7 https://doi.org/10.1016/0341-8162(93)90039-r
8 https://doi.org/10.1016/b978-0-12-411643-6.00029-6
9 https://doi.org/10.1016/j.apr.2017.01.002
10 https://doi.org/10.1016/j.apr.2017.01.003
11 https://doi.org/10.1016/j.cmpb.2016.10.006
12 https://doi.org/10.1016/j.envint.2016.11.016
13 https://doi.org/10.1016/j.envsci.2016.03.008
14 https://doi.org/10.1016/j.mrgentox.2014.11.006
15 https://doi.org/10.1016/j.procs.2015.07.187
16 https://doi.org/10.1016/j.proenv.2016.03.082
17 https://doi.org/10.1016/j.proenv.2016.03.084
18 https://doi.org/10.1080/15287390590936166
19 https://doi.org/10.1109/cluster.2015.86
20 https://doi.org/10.1109/infcom.2002.1019356
21 https://doi.org/10.3389/fpubh.2016.00143
22 schema:datePublished 2017-11-14
23 schema:datePublishedReg 2017-11-14
24 schema:description Recently, the R package has become a popular tool for big data analysis due to its several matured software packages for the data analysis and visualization, including the analysis of air pollution. The air pollution problem is of increasing global concern as it has greatly impacts on the environment and human health. With the rapid development of IoT and the increase in the accuracy of geographical information collected by sensors, a huge amount of air pollution data were generated. Thus, it is difficult to analyze the air pollution data in a single machine environment effectively and reliably due to its inherent characteristic of memory design. In this work, we construct a distributed computing environment based on both the softwares of RHadoop and SparkR for performing the analysis and visualization of air pollution with the R more reliably and effectively. In the work, we firstly use the sensors, called EdiGreen AirBox to collect the air pollution data in Taichung, Taiwan. Then, we adopt the Inverse Distance Weighting method to transform the sensors’ data into the density map. Finally, the experimental results show the accuracy of the short-term prediction results of PM2.5 by using the ARIMA model. In addition, the verification with respect to the prediction accuracy with the MAPE method is also presented in the experimental results.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf sg:journal.1133522
29 schema:name An implementation of cloud-based platform with R packages for spatiotemporal analysis of air pollution
30 schema:pagination 1-22
31 schema:productId N6de587b987b3462581b03aa1f0daeacb
32 N8009cc556d0d436f9e1ed43a3e8c6278
33 Nedc1906ba11f47a88b914339dfa6c4be
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092689631
35 https://doi.org/10.1007/s11227-017-2189-1
36 schema:sdDatePublished 2019-04-11T01:03
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N868762c8dc5549598ba40bd1c36763c1
39 schema:url http://link.springer.com/10.1007/s11227-017-2189-1
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N48d3e1a548294b1f9fedf3acabc59799 rdf:first sg:person.014401756371.51
44 rdf:rest Naaa5b5d9f7b7485a982bc9f49bef4e18
45 N6de587b987b3462581b03aa1f0daeacb schema:name dimensions_id
46 schema:value pub.1092689631
47 rdf:type schema:PropertyValue
48 N8009cc556d0d436f9e1ed43a3e8c6278 schema:name doi
49 schema:value 10.1007/s11227-017-2189-1
50 rdf:type schema:PropertyValue
51 N868762c8dc5549598ba40bd1c36763c1 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N98b95dd6c6104fe089936371f1783ab2 rdf:first sg:person.015712700237.70
54 rdf:rest N48d3e1a548294b1f9fedf3acabc59799
55 Naaa5b5d9f7b7485a982bc9f49bef4e18 rdf:first sg:person.012213305715.35
56 rdf:rest Ne22a7dda62714cffa8a17b1ab026d2eb
57 Ne22a7dda62714cffa8a17b1ab026d2eb rdf:first sg:person.011631725556.57
58 rdf:rest rdf:nil
59 Nedc1906ba11f47a88b914339dfa6c4be schema:name readcube_id
60 schema:value 6d8451142ffa603d7840d6e8053f6bf0205b4aec9e4dc8c1242b922b9321029a
61 rdf:type schema:PropertyValue
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information Systems
67 rdf:type schema:DefinedTerm
68 sg:journal.1133522 schema:issn 0920-8542
69 1573-0484
70 schema:name The Journal of Supercomputing
71 rdf:type schema:Periodical
72 sg:person.011631725556.57 schema:affiliation https://www.grid.ac/institutes/grid.265231.1
73 schema:familyName Lou
74 schema:givenName Ben-Shen
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011631725556.57
76 rdf:type schema:Person
77 sg:person.012213305715.35 schema:affiliation https://www.grid.ac/institutes/grid.265231.1
78 schema:familyName Liu
79 schema:givenName Jung-Chun
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012213305715.35
81 rdf:type schema:Person
82 sg:person.014401756371.51 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
83 schema:familyName Chan
84 schema:givenName Yu-Wei
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014401756371.51
86 rdf:type schema:Person
87 sg:person.015712700237.70 schema:affiliation https://www.grid.ac/institutes/grid.265231.1
88 schema:familyName Yang
89 schema:givenName Chao-Tung
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015712700237.70
91 rdf:type schema:Person
92 sg:pub.10.1007/s11356-016-7812-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049903523
93 https://doi.org/10.1007/s11356-016-7812-9
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s11869-011-0146-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005086029
96 https://doi.org/10.1007/s11869-011-0146-3
97 rdf:type schema:CreativeWork
98 sg:pub.10.1186/1476-069x-13-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026428205
99 https://doi.org/10.1186/1476-069x-13-102
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0341-8162(93)90039-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1016621945
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/b978-0-12-411643-6.00029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053102490
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.apr.2017.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039578445
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.apr.2017.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083904515
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.cmpb.2016.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020917766
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.envint.2016.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050524699
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.envsci.2016.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009674351
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.mrgentox.2014.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011917395
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.procs.2015.07.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006917973
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.proenv.2016.03.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031488864
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.proenv.2016.03.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001755368
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1080/15287390590936166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000812715
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/cluster.2015.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093964107
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/infcom.2002.1019356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095487178
128 rdf:type schema:CreativeWork
129 https://doi.org/10.3389/fpubh.2016.00143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040332923
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.265231.1 schema:alternateName Tunghai University
132 schema:name Department of Computer Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, 40704, Taichung, Taiwan
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.412550.7 schema:alternateName Providence University
135 schema:name College of Computing and Informatics, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu District, Taichung, Taiwan
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...