Cluster Computing for Determining Three-Dimensional Protein Structure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12

AUTHORS

Paulius Micikevicius, Narsingh Deo

ABSTRACT

Determining the three-dimensional structure of proteins is crucial to efficient drug design and understanding biological processes. One successful method for computing the molecule’s shape relies on inter-atomic distance bounds provided by Nuclear Magnetic Resonance spectroscopy. The accuracy of computed structures as well as the time required to obtain them are greatly improved if the gaps between the upper and lower distance-bounds are reduced. These gaps are reduced most effectively by applying the tetrangle inequality, derived from the Cayley-Menger determinant, to all atom-quadruples. However, tetrangle-inequality bound-smoothing is an extremely computation intensive task, requiring O(n4) time for an n-atom molecule. To reduce computation time, we propose a novel coarse-grained parallel algorithm intended for a Beowulf-type cluster of PCs. The algorithm employs p ≤ n/6 processors and requires O(n4/p) time and O(p2) communications, where n is the number of atoms in a molecule. The number of communications is at least an order of magnitude lower than in the earlier parallelizations. Our implementation utilized processors with at least 59% efficiency (including the communication overhead)—an impressive figure for a non-embarrassingly parallel problem on a cluster of workstations. More... »

PAGES

243-271

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11227-005-1168-0

DOI

http://dx.doi.org/10.1007/s11227-005-1168-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046682156


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Armstrong Atlantic State University", 
          "id": "https://www.grid.ac/institutes/grid.252390.f", 
          "name": [
            "Computer Science, Armstrong Atlantic State University, 11935 Abercorn, 31419, Savannah, GA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Micikevicius", 
        "givenName": "Paulius", 
        "id": "sg:person.014360625005.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360625005.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Central Florida", 
          "id": "https://www.grid.ac/institutes/grid.170430.1", 
          "name": [
            "School of Computer Science, University of Central Florida, 32816-2362, Orlando, FL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deo", 
        "givenName": "Narsingh", 
        "id": "sg:person.010274011142.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274011142.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/367766.368168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000891687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002302032", 
          "https://doi.org/10.1007/bf02459510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002302032", 
          "https://doi.org/10.1007/bf02459510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48311-x_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003422453", 
          "https://doi.org/10.1007/3-540-48311-x_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1995.0436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010728475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511526114.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015247828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/358690.358717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017104224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(77)90112-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021996867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrc.1242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025844485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1006/bulm.1999.0123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026990963", 
          "https://doi.org/10.1006/bulm.1999.0123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0097-3165(79)90105-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034535688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035055456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/1997/532130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035492655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bip.360291207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038765900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-7315(91)90083-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038824336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1571-1_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040468711", 
          "https://doi.org/10.1007/978-1-4613-1571-1_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041716633", 
          "https://doi.org/10.1007/bf01386390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042695908", 
          "https://doi.org/10.1007/bf02458843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042695908", 
          "https://doi.org/10.1007/bf02458843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043222138", 
          "https://doi.org/10.1007/bf02460044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043222138", 
          "https://doi.org/10.1007/bf02460044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(88)90009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043246100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/79173.79181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049385325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6107(91)90007-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050172988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7306(08)60458-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050527137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(83)90045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053626768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583598003436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054077673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583598003436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054077673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500003966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054090072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500003966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054090072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(83)80020-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054614582", 
          "https://doi.org/10.1016/s0092-8240(83)80020-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(84)80066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054614708", 
          "https://doi.org/10.1016/s0092-8240(84)80066-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(89)80055-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054614959", 
          "https://doi.org/10.1016/s0092-8240(89)80055-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja035440f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055833523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja035440f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055833523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.181.4096.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062507831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0210049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0805040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2371222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069897945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipps.1999.760545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094644460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aero.1997.577619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095564545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511549533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098682041"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12", 
    "datePublishedReg": "2005-12-01", 
    "description": "Determining the three-dimensional structure of proteins is crucial to efficient drug design and understanding biological processes. One successful method for computing the molecule\u2019s shape relies on inter-atomic distance bounds provided by Nuclear Magnetic Resonance spectroscopy. The accuracy of computed structures as well as the time required to obtain them are greatly improved if the gaps between the upper and lower distance-bounds are reduced. These gaps are reduced most effectively by applying the tetrangle inequality, derived from the Cayley-Menger determinant, to all atom-quadruples. However, tetrangle-inequality bound-smoothing is an extremely computation intensive task, requiring O(n4) time for an n-atom molecule. To reduce computation time, we propose a novel coarse-grained parallel algorithm intended for a Beowulf-type cluster of PCs. The algorithm employs p \u2264 n/6 processors and requires O(n4/p) time and O(p2) communications, where n is the number of atoms in a molecule. The number of communications is at least an order of magnitude lower than in the earlier parallelizations. Our implementation utilized processors with at least 59% efficiency (including the communication overhead)\u2014an impressive figure for a non-embarrassingly parallel problem on a cluster of workstations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11227-005-1168-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1133522", 
        "issn": [
          "0920-8542", 
          "1573-0484"
        ], 
        "name": "The Journal of Supercomputing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Cluster Computing for Determining Three-Dimensional Protein Structure", 
    "pagination": "243-271", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de6009f7291f0d6c6aef33dbd446c75abcb72d7dbfe974944d418a76f05b1b9b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11227-005-1168-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046682156"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11227-005-1168-0", 
      "https://app.dimensions.ai/details/publication/pub.1046682156"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118324_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11227-005-1168-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11227-005-1168-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11227-005-1168-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11227-005-1168-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11227-005-1168-0'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11227-005-1168-0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Na9f763ef069741d2861ae149c0bdba4a
4 schema:citation sg:pub.10.1006/bulm.1999.0123
5 sg:pub.10.1007/3-540-48311-x_6
6 sg:pub.10.1007/978-1-4613-1571-1_17
7 sg:pub.10.1007/bf01386390
8 sg:pub.10.1007/bf02458843
9 sg:pub.10.1007/bf02459510
10 sg:pub.10.1007/bf02460044
11 sg:pub.10.1016/s0092-8240(83)80020-2
12 sg:pub.10.1016/s0092-8240(84)80066-x
13 sg:pub.10.1016/s0092-8240(89)80055-2
14 https://doi.org/10.1002/bip.360291207
15 https://doi.org/10.1002/mrc.1242
16 https://doi.org/10.1006/jmbi.1995.0436
17 https://doi.org/10.1016/0012-365x(83)90045-6
18 https://doi.org/10.1016/0021-9991(77)90112-7
19 https://doi.org/10.1016/0079-6107(91)90007-f
20 https://doi.org/10.1016/0097-3165(79)90105-5
21 https://doi.org/10.1016/0166-218x(88)90009-1
22 https://doi.org/10.1016/0743-7315(91)90083-l
23 https://doi.org/10.1016/s0167-7306(08)60458-5
24 https://doi.org/10.1017/cbo9780511526114.014
25 https://doi.org/10.1017/cbo9780511549533
26 https://doi.org/10.1017/s0033583500003966
27 https://doi.org/10.1017/s0033583598003436
28 https://doi.org/10.1021/ja035440f
29 https://doi.org/10.1093/nar/28.1.235
30 https://doi.org/10.1109/aero.1997.577619
31 https://doi.org/10.1109/ipps.1999.760545
32 https://doi.org/10.1126/science.181.4096.223
33 https://doi.org/10.1137/0210049
34 https://doi.org/10.1137/0805040
35 https://doi.org/10.1145/358690.358717
36 https://doi.org/10.1145/367766.368168
37 https://doi.org/10.1145/79173.79181
38 https://doi.org/10.1155/1997/532130
39 https://doi.org/10.2307/2371222
40 schema:datePublished 2005-12
41 schema:datePublishedReg 2005-12-01
42 schema:description Determining the three-dimensional structure of proteins is crucial to efficient drug design and understanding biological processes. One successful method for computing the molecule’s shape relies on inter-atomic distance bounds provided by Nuclear Magnetic Resonance spectroscopy. The accuracy of computed structures as well as the time required to obtain them are greatly improved if the gaps between the upper and lower distance-bounds are reduced. These gaps are reduced most effectively by applying the tetrangle inequality, derived from the Cayley-Menger determinant, to all atom-quadruples. However, tetrangle-inequality bound-smoothing is an extremely computation intensive task, requiring O(n4) time for an n-atom molecule. To reduce computation time, we propose a novel coarse-grained parallel algorithm intended for a Beowulf-type cluster of PCs. The algorithm employs p ≤ n/6 processors and requires O(n4/p) time and O(p2) communications, where n is the number of atoms in a molecule. The number of communications is at least an order of magnitude lower than in the earlier parallelizations. Our implementation utilized processors with at least 59% efficiency (including the communication overhead)—an impressive figure for a non-embarrassingly parallel problem on a cluster of workstations.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N6fea9e7bf9cc41beac76908ac727beb5
47 N7a8f1772e5ca4efe917cd9bdde2d75e1
48 sg:journal.1133522
49 schema:name Cluster Computing for Determining Three-Dimensional Protein Structure
50 schema:pagination 243-271
51 schema:productId N1394309f5ccd4be4a1dc856a2e8205ec
52 N30313f4998734365b2bd509985fef54f
53 N5746a485a345403f8634a47d335434f7
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046682156
55 https://doi.org/10.1007/s11227-005-1168-0
56 schema:sdDatePublished 2019-04-11T12:05
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N98e9ae4ceabf4ba6a2c931db28b3cb12
59 schema:url http://link.springer.com/10.1007%2Fs11227-005-1168-0
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N1394309f5ccd4be4a1dc856a2e8205ec schema:name doi
64 schema:value 10.1007/s11227-005-1168-0
65 rdf:type schema:PropertyValue
66 N30313f4998734365b2bd509985fef54f schema:name dimensions_id
67 schema:value pub.1046682156
68 rdf:type schema:PropertyValue
69 N5746a485a345403f8634a47d335434f7 schema:name readcube_id
70 schema:value de6009f7291f0d6c6aef33dbd446c75abcb72d7dbfe974944d418a76f05b1b9b
71 rdf:type schema:PropertyValue
72 N6fea9e7bf9cc41beac76908ac727beb5 schema:volumeNumber 34
73 rdf:type schema:PublicationVolume
74 N7a8f1772e5ca4efe917cd9bdde2d75e1 schema:issueNumber 3
75 rdf:type schema:PublicationIssue
76 N98e9ae4ceabf4ba6a2c931db28b3cb12 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Na9f763ef069741d2861ae149c0bdba4a rdf:first sg:person.014360625005.02
79 rdf:rest Nb5c4b4a5cfa3414d8df835db62ed7d58
80 Nb5c4b4a5cfa3414d8df835db62ed7d58 rdf:first sg:person.010274011142.47
81 rdf:rest rdf:nil
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
86 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
87 rdf:type schema:DefinedTerm
88 sg:journal.1133522 schema:issn 0920-8542
89 1573-0484
90 schema:name The Journal of Supercomputing
91 rdf:type schema:Periodical
92 sg:person.010274011142.47 schema:affiliation https://www.grid.ac/institutes/grid.170430.1
93 schema:familyName Deo
94 schema:givenName Narsingh
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274011142.47
96 rdf:type schema:Person
97 sg:person.014360625005.02 schema:affiliation https://www.grid.ac/institutes/grid.252390.f
98 schema:familyName Micikevicius
99 schema:givenName Paulius
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360625005.02
101 rdf:type schema:Person
102 sg:pub.10.1006/bulm.1999.0123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026990963
103 https://doi.org/10.1006/bulm.1999.0123
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/3-540-48311-x_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003422453
106 https://doi.org/10.1007/3-540-48311-x_6
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-1-4613-1571-1_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040468711
109 https://doi.org/10.1007/978-1-4613-1571-1_17
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
112 https://doi.org/10.1007/bf01386390
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf02458843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042695908
115 https://doi.org/10.1007/bf02458843
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02459510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002302032
118 https://doi.org/10.1007/bf02459510
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf02460044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043222138
121 https://doi.org/10.1007/bf02460044
122 rdf:type schema:CreativeWork
123 sg:pub.10.1016/s0092-8240(83)80020-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614582
124 https://doi.org/10.1016/s0092-8240(83)80020-2
125 rdf:type schema:CreativeWork
126 sg:pub.10.1016/s0092-8240(84)80066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614708
127 https://doi.org/10.1016/s0092-8240(84)80066-x
128 rdf:type schema:CreativeWork
129 sg:pub.10.1016/s0092-8240(89)80055-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614959
130 https://doi.org/10.1016/s0092-8240(89)80055-2
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/bip.360291207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038765900
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/mrc.1242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025844485
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1006/jmbi.1995.0436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010728475
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0012-365x(83)90045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053626768
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0021-9991(77)90112-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021996867
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0079-6107(91)90007-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1050172988
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0097-3165(79)90105-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034535688
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0166-218x(88)90009-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043246100
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0743-7315(91)90083-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1038824336
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0167-7306(08)60458-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050527137
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1017/cbo9780511526114.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015247828
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1017/cbo9780511549533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098682041
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1017/s0033583500003966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054090072
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1017/s0033583598003436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054077673
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ja035440f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055833523
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/nar/28.1.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035055456
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/aero.1997.577619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095564545
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/ipps.1999.760545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094644460
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.181.4096.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062507831
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1137/0210049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841602
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/0805040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854323
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1145/358690.358717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017104224
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/367766.368168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000891687
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1145/79173.79181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049385325
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1155/1997/532130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035492655
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2307/2371222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069897945
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.170430.1 schema:alternateName University of Central Florida
185 schema:name School of Computer Science, University of Central Florida, 32816-2362, Orlando, FL
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.252390.f schema:alternateName Armstrong Atlantic State University
188 schema:name Computer Science, Armstrong Atlantic State University, 11935 Abercorn, 31419, Savannah, GA
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...