On Principal Congruences in Distributive Lattices with a Commutative Monoidal Operation and an Implication View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Ramon Jansana, Hernán Javier San Martín

ABSTRACT

In this paper we introduce and study a variety of algebras that properly includes integral distributive commutative residuated lattices and weak Heyting algebras. Our main goal is to give a characterization of the principal congruences in this variety. We apply this description in order to study compatible functions.

PAGES

351-374

References to SciGraph publications

  • 2012-04. Frontal Operators in Weak Heyting Algebras in STUDIA LOGICA
  • 2016-07. Principal congruences in weak Heyting algebras in ALGEBRA UNIVERSALIS
  • 2004-11. Implicit connectives of algebraizable logics in STUDIA LOGICA
  • 1977-03. On some new intuitionistic propositional connectives. I in STUDIA LOGICA
  • 1981. A Course in Universal Algebra in NONE
  • 2011-07. Compatible Operations on Residuated Lattices in STUDIA LOGICA
  • 2007. Implicit Operations in MV-Algebras and the Connectives of Łukasiewicz Logic in ALGEBRAIC AND PROOF-THEORETIC ASPECTS OF NON-CLASSICAL LOGICS
  • 2015-04. Compatible operations on commutative weak residuated lattices in ALGEBRA UNIVERSALIS
  • 2011-08. On Some Compatible Operations on Heyting Algebras in STUDIA LOGICA
  • 1980-12. Uniform congruence schemes in ALGEBRA UNIVERSALIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11225-018-9796-6

    DOI

    http://dx.doi.org/10.1007/s11225-018-9796-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103240244


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Barcelona", 
              "id": "https://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Barcelona Graduate School of Mathematics, Philosophy Department, Universitat de Barcelona, Montalegre, 6, 08001, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jansana", 
            "givenName": "Ramon", 
            "id": "sg:person.016244130235.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016244130235.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of La Plata", 
              "id": "https://www.grid.ac/institutes/grid.9499.d", 
              "name": [
                "Departamento de Matem\u00e1tica, Facultad de Ciencias Exactas (UNLP) and CONICET, Casilla de correos 172, 1900, La Plata, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "San Mart\u00edn", 
            "givenName": "Hern\u00e1n Javier", 
            "id": "sg:person.016100152551.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016100152551.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11225-012-9390-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016014573", 
              "https://doi.org/10.1007/s11225-012-9390-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3166/jancl.16.349-366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026527149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02482900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028357096", 
              "https://doi.org/10.1007/bf02482900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02482900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028357096", 
              "https://doi.org/10.1007/bf02482900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2694965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029285121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75939-3_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032629172", 
              "https://doi.org/10.1007/978-3-540-75939-3_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75939-3_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032629172", 
              "https://doi.org/10.1007/978-3-540-75939-3_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11225-005-5170-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034620103", 
              "https://doi.org/10.1007/s11225-005-5170-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/malq.200410022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035942649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11225-011-9338-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042634026", 
              "https://doi.org/10.1007/s11225-011-9338-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00012-015-0317-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049129490", 
              "https://doi.org/10.1007/s00012-015-0317-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11225-011-9333-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049321635", 
              "https://doi.org/10.1007/s11225-011-9333-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3166/jancl.18.413-425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049827591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02121119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050372714", 
              "https://doi.org/10.1007/bf02121119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02121119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050372714", 
              "https://doi.org/10.1007/bf02121119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00012-016-0381-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052094564", 
              "https://doi.org/10.1007/s00012-016-0381-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218196702001048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062961070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2168/lmcs-7(2:9)2011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069151112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109705173", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8130-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705173", 
              "https://doi.org/10.1007/978-1-4613-8130-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8130-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705173", 
              "https://doi.org/10.1007/978-1-4613-8130-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "In this paper we introduce and study a variety of algebras that properly includes integral distributive commutative residuated lattices and weak Heyting algebras. Our main goal is to give a characterization of the principal congruences in this variety. We apply this description in order to study compatible functions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11225-018-9796-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5050821", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1051009", 
            "issn": [
              "0039-3215", 
              "1572-8730"
            ], 
            "name": "Studia Logica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "107"
          }
        ], 
        "name": "On Principal Congruences in Distributive Lattices with a Commutative Monoidal Operation and an Implication", 
        "pagination": "351-374", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103240244"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11225-018-9796-6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "adef37e446eac031624a320b463c57787553b064503f01d3d1456c806ff62b4b"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11225-018-9796-6", 
          "https://app.dimensions.ai/details/publication/pub.1103240244"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-16T06:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106842_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11225-018-9796-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11225-018-9796-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11225-018-9796-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11225-018-9796-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11225-018-9796-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11225-018-9796-6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N145b2c9395d44ab8b9acf05215327332
    4 schema:citation sg:pub.10.1007/978-1-4613-8130-3
    5 sg:pub.10.1007/978-3-540-75939-3_4
    6 sg:pub.10.1007/bf02121119
    7 sg:pub.10.1007/bf02482900
    8 sg:pub.10.1007/s00012-015-0317-4
    9 sg:pub.10.1007/s00012-016-0381-4
    10 sg:pub.10.1007/s11225-005-5170-6
    11 sg:pub.10.1007/s11225-011-9333-3
    12 sg:pub.10.1007/s11225-011-9338-y
    13 sg:pub.10.1007/s11225-012-9390-2
    14 https://app.dimensions.ai/details/publication/pub.1109705173
    15 https://doi.org/10.1002/malq.200410022
    16 https://doi.org/10.1142/s0218196702001048
    17 https://doi.org/10.2168/lmcs-7(2:9)2011
    18 https://doi.org/10.2307/2694965
    19 https://doi.org/10.3166/jancl.16.349-366
    20 https://doi.org/10.3166/jancl.18.413-425
    21 schema:datePublished 2019-04
    22 schema:datePublishedReg 2019-04-01
    23 schema:description In this paper we introduce and study a variety of algebras that properly includes integral distributive commutative residuated lattices and weak Heyting algebras. Our main goal is to give a characterization of the principal congruences in this variety. We apply this description in order to study compatible functions.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N1eaae987f8eb444ba1ae7a4ab0723b82
    28 N897836d8dbad403883369772cfcb0952
    29 sg:journal.1051009
    30 schema:name On Principal Congruences in Distributive Lattices with a Commutative Monoidal Operation and an Implication
    31 schema:pagination 351-374
    32 schema:productId N0d103c0d2b7a4da6961bd81a5f76a425
    33 N447c2386366b4129807a053c79ec87ce
    34 Nb6afdac88528404c97b67d06eb04a454
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103240244
    36 https://doi.org/10.1007/s11225-018-9796-6
    37 schema:sdDatePublished 2019-04-16T06:26
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N34c373f680df4746a69b63cb33770f7b
    40 schema:url https://link.springer.com/10.1007%2Fs11225-018-9796-6
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N0d103c0d2b7a4da6961bd81a5f76a425 schema:name doi
    45 schema:value 10.1007/s11225-018-9796-6
    46 rdf:type schema:PropertyValue
    47 N145b2c9395d44ab8b9acf05215327332 rdf:first sg:person.016244130235.14
    48 rdf:rest N3b89bbed5cbe4d94ad27dade745be55c
    49 N1eaae987f8eb444ba1ae7a4ab0723b82 schema:issueNumber 2
    50 rdf:type schema:PublicationIssue
    51 N34c373f680df4746a69b63cb33770f7b schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N3b89bbed5cbe4d94ad27dade745be55c rdf:first sg:person.016100152551.50
    54 rdf:rest rdf:nil
    55 N447c2386366b4129807a053c79ec87ce schema:name readcube_id
    56 schema:value adef37e446eac031624a320b463c57787553b064503f01d3d1456c806ff62b4b
    57 rdf:type schema:PropertyValue
    58 N897836d8dbad403883369772cfcb0952 schema:volumeNumber 107
    59 rdf:type schema:PublicationVolume
    60 Nb6afdac88528404c97b67d06eb04a454 schema:name dimensions_id
    61 schema:value pub.1103240244
    62 rdf:type schema:PropertyValue
    63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Mathematical Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Pure Mathematics
    68 rdf:type schema:DefinedTerm
    69 sg:grant.5050821 http://pending.schema.org/fundedItem sg:pub.10.1007/s11225-018-9796-6
    70 rdf:type schema:MonetaryGrant
    71 sg:journal.1051009 schema:issn 0039-3215
    72 1572-8730
    73 schema:name Studia Logica
    74 rdf:type schema:Periodical
    75 sg:person.016100152551.50 schema:affiliation https://www.grid.ac/institutes/grid.9499.d
    76 schema:familyName San Martín
    77 schema:givenName Hernán Javier
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016100152551.50
    79 rdf:type schema:Person
    80 sg:person.016244130235.14 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
    81 schema:familyName Jansana
    82 schema:givenName Ramon
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016244130235.14
    84 rdf:type schema:Person
    85 sg:pub.10.1007/978-1-4613-8130-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705173
    86 https://doi.org/10.1007/978-1-4613-8130-3
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/978-3-540-75939-3_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032629172
    89 https://doi.org/10.1007/978-3-540-75939-3_4
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf02121119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050372714
    92 https://doi.org/10.1007/bf02121119
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf02482900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028357096
    95 https://doi.org/10.1007/bf02482900
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s00012-015-0317-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049129490
    98 https://doi.org/10.1007/s00012-015-0317-4
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s00012-016-0381-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052094564
    101 https://doi.org/10.1007/s00012-016-0381-4
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s11225-005-5170-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034620103
    104 https://doi.org/10.1007/s11225-005-5170-6
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s11225-011-9333-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049321635
    107 https://doi.org/10.1007/s11225-011-9333-3
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s11225-011-9338-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042634026
    110 https://doi.org/10.1007/s11225-011-9338-y
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s11225-012-9390-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016014573
    113 https://doi.org/10.1007/s11225-012-9390-2
    114 rdf:type schema:CreativeWork
    115 https://app.dimensions.ai/details/publication/pub.1109705173 schema:CreativeWork
    116 https://doi.org/10.1002/malq.200410022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035942649
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1142/s0218196702001048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062961070
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.2168/lmcs-7(2:9)2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069151112
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.2307/2694965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029285121
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.3166/jancl.16.349-366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026527149
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.3166/jancl.18.413-425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049827591
    127 rdf:type schema:CreativeWork
    128 https://www.grid.ac/institutes/grid.5841.8 schema:alternateName University of Barcelona
    129 schema:name Barcelona Graduate School of Mathematics, Philosophy Department, Universitat de Barcelona, Montalegre, 6, 08001, Barcelona, Spain
    130 rdf:type schema:Organization
    131 https://www.grid.ac/institutes/grid.9499.d schema:alternateName National University of La Plata
    132 schema:name Departamento de Matemática, Facultad de Ciencias Exactas (UNLP) and CONICET, Casilla de correos 172, 1900, La Plata, Argentina
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...