Water-gas-shift reaction over nickel catalysts: DFT studies and kinetic modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-22

AUTHORS

Ali Nakhaei Pour, Sayyed Faramarz Tayyari

ABSTRACT

Density functional theory (DFT) calculations were used to study the mechanism of water gas shift (WGS) reaction on Ni (111) surfaces. Three sets of elementary reactions based on the formate intermediate and oxidation-reduction mechanisms are considered in this study. Formate intermediate is produced via dissociation and non-dissociation adsorption of H2O in the proposed mechanisms. The adsorption energy for all surface species and the activation barriers for the rate-determining steps in these WGS mechanisms were calculated. The overall reaction rates were developed based on the considered mechanisms. Based on the Sabatier principle, the effects of CO and H2O adsorption energies on the activation energy of the rate-determining reactions in the proposed mechanisms are considered. According to the calculated overall activation energies, the formate intermediates produced from the reaction between adsorbed H2O and CO species provide the best condition for the overall WGS reaction. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11224-019-01294-0

DOI

http://dx.doi.org/10.1007/s11224-019-01294-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112946640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakhaei Pour", 
        "givenName": "Ali", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tayyari", 
        "givenName": "Sayyed Faramarz", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2014.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000545214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2015.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008720970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010201973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(94)91245-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012840094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(94)91245-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012840094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2006.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015612699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-860x(01)00528-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016485624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2004.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017594479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/cr-100101170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018585046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcata.2006.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jngse.2010.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026910426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13738-014-0435-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030279927", 
          "https://doi.org/10.1007/s13738-014-0435-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2010.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030330605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cherd.2010.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031311196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1542-6580.2238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033574215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2014.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034054167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/5/14/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042470231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jechem.2016.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042742438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja802554g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055858369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja802554g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055858369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp054608b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056062685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp054608b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056062685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp2034467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056083178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp2034467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056083178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp302488f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056088749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1680935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057757019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.438041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058016070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.465282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058043290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4827641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058085613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.054110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.054110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3184/146867816x14628763021337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071114527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3184/146867816x14628763021337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071114527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3184/146867816x14628763021337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071114527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/jnanor.42.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072056801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.energyfuels.7b01765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092152459"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-22", 
    "datePublishedReg": "2019-03-22", 
    "description": "Density functional theory (DFT) calculations were used to study the mechanism of water gas shift (WGS) reaction on Ni (111) surfaces. Three sets of elementary reactions based on the formate intermediate and oxidation-reduction mechanisms are considered in this study. Formate intermediate is produced via dissociation and non-dissociation adsorption of H2O in the proposed mechanisms. The adsorption energy for all surface species and the activation barriers for the rate-determining steps in these WGS mechanisms were calculated. The overall reaction rates were developed based on the considered mechanisms. Based on the Sabatier principle, the effects of CO and H2O adsorption energies on the activation energy of the rate-determining reactions in the proposed mechanisms are considered. According to the calculated overall activation energies, the formate intermediates produced from the reaction between adsorbed H2O and CO species provide the best condition for the overall WGS reaction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11224-019-01294-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046791", 
        "issn": [
          "1040-0400", 
          "1572-9001"
        ], 
        "name": "Structural Chemistry", 
        "type": "Periodical"
      }
    ], 
    "name": "Water-gas-shift reaction over nickel catalysts: DFT studies and kinetic modeling", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9af20a78688507e18db02ff1bc6b41c044fe91f8a2a8bb38370dd3da3ea24957"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11224-019-01294-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112946640"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11224-019-01294-0", 
      "https://app.dimensions.ai/details/publication/pub.1112946640"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72843_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11224-019-01294-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11224-019-01294-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11224-019-01294-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11224-019-01294-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11224-019-01294-0'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11224-019-01294-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N0425c7a894554b7b89a6d66344640e9a
4 schema:citation sg:pub.10.1007/s13738-014-0435-5
5 https://doi.org/10.1016/0039-6028(94)91245-9
6 https://doi.org/10.1016/j.apcata.2006.09.020
7 https://doi.org/10.1016/j.cherd.2010.07.008
8 https://doi.org/10.1016/j.ijhydene.2014.08.041
9 https://doi.org/10.1016/j.ijhydene.2015.04.028
10 https://doi.org/10.1016/j.jcat.2004.01.002
11 https://doi.org/10.1016/j.jcat.2010.09.007
12 https://doi.org/10.1016/j.jechem.2016.12.006
13 https://doi.org/10.1016/j.jngse.2010.04.001
14 https://doi.org/10.1016/j.molcata.2006.04.013
15 https://doi.org/10.1016/j.susc.2014.04.006
16 https://doi.org/10.1016/j.susc.2015.09.014
17 https://doi.org/10.1016/s0926-860x(01)00528-2
18 https://doi.org/10.1021/acs.energyfuels.7b01765
19 https://doi.org/10.1021/ja802554g
20 https://doi.org/10.1021/jp054608b
21 https://doi.org/10.1021/jp2034467
22 https://doi.org/10.1021/jp302488f
23 https://doi.org/10.1063/1.1680935
24 https://doi.org/10.1063/1.438041
25 https://doi.org/10.1063/1.465282
26 https://doi.org/10.1063/1.4827641
27 https://doi.org/10.1081/cr-100101170
28 https://doi.org/10.1088/0953-8984/21/39/395502
29 https://doi.org/10.1088/0953-8984/5/14/005
30 https://doi.org/10.1103/physrevb.77.054110
31 https://doi.org/10.2202/1542-6580.2238
32 https://doi.org/10.3184/146867816x14628763021337
33 https://doi.org/10.4028/www.scientific.net/jnanor.42.100
34 schema:datePublished 2019-03-22
35 schema:datePublishedReg 2019-03-22
36 schema:description Density functional theory (DFT) calculations were used to study the mechanism of water gas shift (WGS) reaction on Ni (111) surfaces. Three sets of elementary reactions based on the formate intermediate and oxidation-reduction mechanisms are considered in this study. Formate intermediate is produced via dissociation and non-dissociation adsorption of H2O in the proposed mechanisms. The adsorption energy for all surface species and the activation barriers for the rate-determining steps in these WGS mechanisms were calculated. The overall reaction rates were developed based on the considered mechanisms. Based on the Sabatier principle, the effects of CO and H2O adsorption energies on the activation energy of the rate-determining reactions in the proposed mechanisms are considered. According to the calculated overall activation energies, the formate intermediates produced from the reaction between adsorbed H2O and CO species provide the best condition for the overall WGS reaction.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1046791
41 schema:name Water-gas-shift reaction over nickel catalysts: DFT studies and kinetic modeling
42 schema:pagination 1-10
43 schema:productId N2879deee7fd346a9a0b4e7e07dbb74d5
44 N9748eba84f1a400e8484c3b3afd3467a
45 Nc52669129080471280c7178564fc6e33
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112946640
47 https://doi.org/10.1007/s11224-019-01294-0
48 schema:sdDatePublished 2019-04-11T12:53
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N91adad18f6994abd9ca41134339818f1
51 schema:url https://link.springer.com/10.1007%2Fs11224-019-01294-0
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0425c7a894554b7b89a6d66344640e9a rdf:first Ne09cb6fc118148dcaf05c96ee1a44869
56 rdf:rest N20aeee5ea7c14ff0b308f202ee6e5223
57 N20aeee5ea7c14ff0b308f202ee6e5223 rdf:first N40424af1a6ae43808ecee4b648c598a2
58 rdf:rest rdf:nil
59 N2879deee7fd346a9a0b4e7e07dbb74d5 schema:name readcube_id
60 schema:value 9af20a78688507e18db02ff1bc6b41c044fe91f8a2a8bb38370dd3da3ea24957
61 rdf:type schema:PropertyValue
62 N40424af1a6ae43808ecee4b648c598a2 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
63 schema:familyName Tayyari
64 schema:givenName Sayyed Faramarz
65 rdf:type schema:Person
66 N91adad18f6994abd9ca41134339818f1 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N9748eba84f1a400e8484c3b3afd3467a schema:name dimensions_id
69 schema:value pub.1112946640
70 rdf:type schema:PropertyValue
71 Nc52669129080471280c7178564fc6e33 schema:name doi
72 schema:value 10.1007/s11224-019-01294-0
73 rdf:type schema:PropertyValue
74 Ne09cb6fc118148dcaf05c96ee1a44869 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
75 schema:familyName Nakhaei Pour
76 schema:givenName Ali
77 rdf:type schema:Person
78 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
79 schema:name Chemical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Chemistry (incl. Structural)
83 rdf:type schema:DefinedTerm
84 sg:journal.1046791 schema:issn 1040-0400
85 1572-9001
86 schema:name Structural Chemistry
87 rdf:type schema:Periodical
88 sg:pub.10.1007/s13738-014-0435-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030279927
89 https://doi.org/10.1007/s13738-014-0435-5
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0039-6028(94)91245-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012840094
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.apcata.2006.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015612699
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.cherd.2010.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031311196
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.ijhydene.2014.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000545214
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.ijhydene.2015.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010201973
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.jcat.2004.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017594479
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.jcat.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030330605
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.jechem.2016.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042742438
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.jngse.2010.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026910426
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.molcata.2006.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024684790
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.susc.2014.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034054167
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.susc.2015.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008720970
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0926-860x(01)00528-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485624
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/acs.energyfuels.7b01765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152459
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/ja802554g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055858369
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/jp054608b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056062685
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/jp2034467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056083178
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/jp302488f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056088749
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.1680935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057757019
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.438041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058016070
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.465282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058043290
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.4827641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058085613
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1081/cr-100101170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018585046
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0953-8984/21/39/395502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037182159
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/0953-8984/5/14/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042470231
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.77.054110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623732
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2202/1542-6580.2238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033574215
144 rdf:type schema:CreativeWork
145 https://doi.org/10.3184/146867816x14628763021337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071114527
146 rdf:type schema:CreativeWork
147 https://doi.org/10.4028/www.scientific.net/jnanor.42.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072056801
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
150 schema:name Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...