Orthant probabilities of elliptical distributions from orthogonal projections to subspaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Noboru Nomura

ABSTRACT

A new procedure is proposed for evaluating non-centred orthant probabilities of elliptical distributed vectors, which is the probabilities that all elements of a vector are non-negative. The definition of orthant probabilities is simple, formulated as a multiple integral of the density function; however, applying direct numerical integration is not practical, except in low-dimensional cases, and methods for evaluating orthant probabilities are not trivial. This probability arises frequently in statistics; in particular, the normal distribution and Student’s t-distribution are in the family of elliptical distribution. In the procedure proposed in this paper, an orthant probability is approximated by the probability that the vector falls in a simplex. In the process, the problem is decomposed into sub-problems of lower dimension based on the symmetry of elliptical distributions. Intermediate sub-problems can be generated by projection onto subspaces, and the sub-problems form a lattice structure. Considering this structure, intermediate computations are shared between the evaluations of higher-dimensional problems, and computational time is reduced. The procedure can be applied not only to normal distributions, but also to general elliptical distributions, especially t-distributions, which are used in the multiple comparison procedure. More... »

PAGES

289-300

Journal

TITLE

Statistics and Computing

ISSUE

2

VOLUME

29

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11222-018-9808-4

DOI

http://dx.doi.org/10.1007/s11222-018-9808-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101631598


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "K\u014dchi University", 
          "id": "https://www.grid.ac/institutes/grid.278276.e", 
          "name": [
            "Faculty of Science and Technology, Kochi University, Akebono-cho, 780-8520, Kochi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nomura", 
        "givenName": "Noboru", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1467-9868.00382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004128256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-015-9578-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015718326", 
          "https://doi.org/10.1007/s11222-015-9578-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1015832800", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01689-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015832800", 
          "https://doi.org/10.1007/978-3-642-01689-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01689-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015832800", 
          "https://doi.org/10.1007/978-3-642-01689-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-014-9487-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024225716", 
          "https://doi.org/10.1007/s11222-014-9487-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(99)00075-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026585923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9655-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038651733", 
          "https://doi.org/10.1007/978-1-4613-9655-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9655-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038651733", 
          "https://doi.org/10.1007/978-1-4613-9655-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2012.717224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042830311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(80)90017-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049876827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2007.00625.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052775348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/32.2.196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059415925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177704004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177704005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103192144", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "A new procedure is proposed for evaluating non-centred orthant probabilities of elliptical distributed vectors, which is the probabilities that all elements of a vector are non-negative. The definition of orthant probabilities is simple, formulated as a multiple integral of the density function; however, applying direct numerical integration is not practical, except in low-dimensional cases, and methods for evaluating orthant probabilities are not trivial. This probability arises frequently in statistics; in particular, the normal distribution and Student\u2019s t-distribution are in the family of elliptical distribution. In the procedure proposed in this paper, an orthant probability is approximated by the probability that the vector falls in a simplex. In the process, the problem is decomposed into sub-problems of lower dimension based on the symmetry of elliptical distributions. Intermediate sub-problems can be generated by projection onto subspaces, and the sub-problems form a lattice structure. Considering this structure, intermediate computations are shared between the evaluations of higher-dimensional problems, and computational time is reduced. The procedure can be applied not only to normal distributions, but also to general elliptical distributions, especially t-distributions, which are used in the multiple comparison procedure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11222-018-9808-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Orthant probabilities of elliptical distributions from orthogonal projections to subspaces", 
    "pagination": "289-300", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d59ab1dea33cc5d96c18d124a187af4aa66e752d9b2c8a49dae200a7edd0dd0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11222-018-9808-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101631598"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11222-018-9808-4", 
      "https://app.dimensions.ai/details/publication/pub.1101631598"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87100_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11222-018-9808-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-018-9808-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-018-9808-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-018-9808-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-018-9808-4'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11222-018-9808-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na574d80eed804654a798b332712a7fff
4 schema:citation sg:pub.10.1007/978-1-4613-9655-0
5 sg:pub.10.1007/978-3-642-01689-9
6 sg:pub.10.1007/s11222-014-9487-8
7 sg:pub.10.1007/s11222-015-9578-1
8 https://app.dimensions.ai/details/publication/pub.1015832800
9 https://app.dimensions.ai/details/publication/pub.1103192144
10 https://doi.org/10.1016/0047-259x(80)90017-2
11 https://doi.org/10.1016/s0167-9473(99)00075-4
12 https://doi.org/10.1080/00949655.2012.717224
13 https://doi.org/10.1093/biomet/32.2.196
14 https://doi.org/10.1111/1467-9868.00382
15 https://doi.org/10.1111/j.1467-9868.2007.00625.x
16 https://doi.org/10.1214/aoms/1177704004
17 https://doi.org/10.1214/aoms/1177704005
18 schema:datePublished 2019-03
19 schema:datePublishedReg 2019-03-01
20 schema:description A new procedure is proposed for evaluating non-centred orthant probabilities of elliptical distributed vectors, which is the probabilities that all elements of a vector are non-negative. The definition of orthant probabilities is simple, formulated as a multiple integral of the density function; however, applying direct numerical integration is not practical, except in low-dimensional cases, and methods for evaluating orthant probabilities are not trivial. This probability arises frequently in statistics; in particular, the normal distribution and Student’s t-distribution are in the family of elliptical distribution. In the procedure proposed in this paper, an orthant probability is approximated by the probability that the vector falls in a simplex. In the process, the problem is decomposed into sub-problems of lower dimension based on the symmetry of elliptical distributions. Intermediate sub-problems can be generated by projection onto subspaces, and the sub-problems form a lattice structure. Considering this structure, intermediate computations are shared between the evaluations of higher-dimensional problems, and computational time is reduced. The procedure can be applied not only to normal distributions, but also to general elliptical distributions, especially t-distributions, which are used in the multiple comparison procedure.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N390d53a1de7e49f1a9b39a641a1f424f
25 N7fced25159174808bb25887937a5efeb
26 sg:journal.1327447
27 schema:name Orthant probabilities of elliptical distributions from orthogonal projections to subspaces
28 schema:pagination 289-300
29 schema:productId N23f8694c9f684f5ea86c083358075b39
30 N7dd9cf3fc2ba4d95b486e18ed09f748f
31 Nfc8f5fe418e14271b70a4873cbc22009
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101631598
33 https://doi.org/10.1007/s11222-018-9808-4
34 schema:sdDatePublished 2019-04-11T12:24
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Ncba8c3a0fb0c490390133c3d1a209ff9
37 schema:url https://link.springer.com/10.1007%2Fs11222-018-9808-4
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N06c032d198344444aa3a05853916c74a schema:affiliation https://www.grid.ac/institutes/grid.278276.e
42 schema:familyName Nomura
43 schema:givenName Noboru
44 rdf:type schema:Person
45 N23f8694c9f684f5ea86c083358075b39 schema:name dimensions_id
46 schema:value pub.1101631598
47 rdf:type schema:PropertyValue
48 N390d53a1de7e49f1a9b39a641a1f424f schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 N7dd9cf3fc2ba4d95b486e18ed09f748f schema:name readcube_id
51 schema:value 4d59ab1dea33cc5d96c18d124a187af4aa66e752d9b2c8a49dae200a7edd0dd0
52 rdf:type schema:PropertyValue
53 N7fced25159174808bb25887937a5efeb schema:volumeNumber 29
54 rdf:type schema:PublicationVolume
55 Na574d80eed804654a798b332712a7fff rdf:first N06c032d198344444aa3a05853916c74a
56 rdf:rest rdf:nil
57 Ncba8c3a0fb0c490390133c3d1a209ff9 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nfc8f5fe418e14271b70a4873cbc22009 schema:name doi
60 schema:value 10.1007/s11222-018-9808-4
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
66 schema:name Statistics
67 rdf:type schema:DefinedTerm
68 sg:journal.1327447 schema:issn 0960-3174
69 1573-1375
70 schema:name Statistics and Computing
71 rdf:type schema:Periodical
72 sg:pub.10.1007/978-1-4613-9655-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038651733
73 https://doi.org/10.1007/978-1-4613-9655-0
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/978-3-642-01689-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015832800
76 https://doi.org/10.1007/978-3-642-01689-9
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/s11222-014-9487-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024225716
79 https://doi.org/10.1007/s11222-014-9487-8
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s11222-015-9578-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015718326
82 https://doi.org/10.1007/s11222-015-9578-1
83 rdf:type schema:CreativeWork
84 https://app.dimensions.ai/details/publication/pub.1015832800 schema:CreativeWork
85 https://app.dimensions.ai/details/publication/pub.1103192144 schema:CreativeWork
86 https://doi.org/10.1016/0047-259x(80)90017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049876827
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/s0167-9473(99)00075-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026585923
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1080/00949655.2012.717224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042830311
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1093/biomet/32.2.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059415925
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1111/1467-9868.00382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004128256
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1111/j.1467-9868.2007.00625.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052775348
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1214/aoms/1177704004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400332
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1214/aoms/1177704005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400333
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.278276.e schema:alternateName Kōchi University
103 schema:name Faculty of Science and Technology, Kochi University, Akebono-cho, 780-8520, Kochi, Japan
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...