Generalized additive models with flexible response functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Elmar Spiegel, Thomas Kneib, Fabian Otto-Sobotka

ABSTRACT

Common generalized linear models depend on several assumptions: (i) the specified linear predictor, (ii) the chosen response distribution that determines the likelihood and (iii) the response function that maps the linear predictor to the conditional expectation of the response. Generalized additive models (GAM) provide a convenient way to overcome the restriction to purely linear predictors. Therefore, the covariates may be included as flexible nonlinear or spatial functions to avoid potential bias arising from misspecification. Single index models, on the other hand, utilize flexible specifications of the response function and therefore avoid the deteriorating impact of a misspecified response function. However, such single index models are usually restricted to a linear predictor and aim to compensate for potential nonlinear structures only via the estimated response function. We will show that this is insufficient in many cases and present a solution by combining a flexible approach for response function estimation using monotonic P-splines with additive predictors as in GAMs. Our approach is based on maximum likelihood estimation and also allows us to provide confidence intervals of the estimated effects. To compare our approach with existing ones, we conduct extensive simulation studies and apply our approach on two empirical examples, namely the mortality rate in São Paulo due to respiratory diseases based on the Poisson distribution and credit scoring of a German bank with binary responses. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11222-017-9799-6

DOI

http://dx.doi.org/10.1007/s11222-017-9799-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099739952


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "University of Goettingen, Goettingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spiegel", 
        "givenName": "Elmar", 
        "id": "sg:person.012170317115.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012170317115.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "University of Goettingen, Goettingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carl von Ossietzky University of Oldenburg", 
          "id": "https://www.grid.ac/institutes/grid.5560.6", 
          "name": [
            "Carl von Ossietzky University Oldenburg, Oldenburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otto-Sobotka", 
        "givenName": "Fabian", 
        "id": "sg:person.015172366274.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172366274.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.chemolab.2015.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000007392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2009.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002460012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007863731", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007863731", 
          "https://doi.org/10.1007/978-3-642-34333-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007863731", 
          "https://doi.org/10.1007/978-3-642-34333-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-016-9639-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009769076", 
          "https://doi.org/10.1007/s11222-016-9639-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-016-9639-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009769076", 
          "https://doi.org/10.1007/s11222-016-9639-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02664763.2016.1155109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010695896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x1001100302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012562817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x1001100302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012562817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2007.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020414759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9469.2011.00760.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025756845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2011.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027718235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1466-8238.2007.00358.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036408795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-011-9246-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040865164", 
          "https://doi.org/10.1007/s11222-011-9246-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(93)90114-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041696386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1348/000711005x84293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041716947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3758(92)90069-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044166738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxl036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046733261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-013-9448-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047330060", 
          "https://doi.org/10.1007/s11222-013-9448-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-013-9448-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047330060", 
          "https://doi.org/10.1007/s11222-013-9448-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-009-5119-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047736115", 
          "https://doi.org/10.1007/s10994-009-5119-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-009-5119-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047736115", 
          "https://doi.org/10.1007/s10994-009-5119-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-sts242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049744920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177013604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052575245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1052799597", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37887-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052799597", 
          "https://doi.org/10.1007/978-3-642-37887-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37887-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052799597", 
          "https://doi.org/10.1007/978-3-642-37887-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1981.10477729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1997.10474001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0915069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214502388618861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176325749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2951556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070145876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083811023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083811023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511811241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705877", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3242-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705877", 
          "https://doi.org/10.1007/978-1-4899-3242-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3242-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705877", 
          "https://doi.org/10.1007/978-1-4899-3242-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Common generalized linear models depend on several assumptions: (i) the specified linear predictor, (ii) the chosen response distribution that determines the likelihood and (iii) the response function that maps the linear predictor to the conditional expectation of the response. Generalized additive models (GAM) provide a convenient way to overcome the restriction to purely linear predictors. Therefore, the covariates may be included as flexible nonlinear or spatial functions to avoid potential bias arising from misspecification. Single index models, on the other hand, utilize flexible specifications of the response function and therefore avoid the deteriorating impact of a misspecified response function. However, such single index models are usually restricted to a linear predictor and aim to compensate for potential nonlinear structures only via the estimated response function. We will show that this is insufficient in many cases and present a solution by combining a flexible approach for response function estimation using monotonic P-splines with additive predictors as in GAMs. Our approach is based on maximum likelihood estimation and also allows us to provide confidence intervals of the estimated effects. To compare our approach with existing ones, we conduct extensive simulation studies and apply our approach on two empirical examples, namely the mortality rate in S\u00e3o Paulo due to respiratory diseases based on the Poisson distribution and credit scoring of a German bank with binary responses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11222-017-9799-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "Generalized additive models with flexible response functions", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "897ff661720a0646f771ad0cfc30e21621d81e13f43bfce06d9d21987eb4003f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11222-017-9799-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099739952"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11222-017-9799-6", 
      "https://app.dimensions.ai/details/publication/pub.1099739952"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11222-017-9799-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-017-9799-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-017-9799-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-017-9799-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-017-9799-6'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      59 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11222-017-9799-6 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N9805f97617f547e881b1f2c5fecc2eb9
4 schema:citation sg:pub.10.1007/978-1-4899-3242-6
5 sg:pub.10.1007/978-3-642-34333-9
6 sg:pub.10.1007/978-3-642-37887-4
7 sg:pub.10.1007/s10994-009-5119-5
8 sg:pub.10.1007/s11222-011-9246-z
9 sg:pub.10.1007/s11222-013-9448-7
10 sg:pub.10.1007/s11222-016-9639-0
11 https://app.dimensions.ai/details/publication/pub.1007863731
12 https://app.dimensions.ai/details/publication/pub.1052799597
13 https://app.dimensions.ai/details/publication/pub.1109705877
14 https://doi.org/10.1016/0304-4076(93)90114-k
15 https://doi.org/10.1016/0378-3758(92)90069-5
16 https://doi.org/10.1016/j.chemolab.2015.02.005
17 https://doi.org/10.1016/j.csda.2007.08.011
18 https://doi.org/10.1016/j.csda.2011.02.004
19 https://doi.org/10.1016/j.jeconom.2009.01.009
20 https://doi.org/10.1017/cbo9780511811241
21 https://doi.org/10.1080/01621459.1981.10477729
22 https://doi.org/10.1080/01621459.1997.10474001
23 https://doi.org/10.1080/02664763.2016.1155109
24 https://doi.org/10.1093/biostatistics/kxl036
25 https://doi.org/10.1111/biom.12666
26 https://doi.org/10.1111/j.1466-8238.2007.00358.x
27 https://doi.org/10.1111/j.1467-9469.2011.00760.x
28 https://doi.org/10.1137/0915069
29 https://doi.org/10.1177/1471082x1001100302
30 https://doi.org/10.1198/016214502388618861
31 https://doi.org/10.1214/07-sts242
32 https://doi.org/10.1214/aos/1176325749
33 https://doi.org/10.1214/ss/1038425655
34 https://doi.org/10.1214/ss/1177013604
35 https://doi.org/10.1348/000711005x84293
36 https://doi.org/10.2307/1403047
37 https://doi.org/10.2307/2951556
38 schema:datePublished 2019-01
39 schema:datePublishedReg 2019-01-01
40 schema:description Common generalized linear models depend on several assumptions: (i) the specified linear predictor, (ii) the chosen response distribution that determines the likelihood and (iii) the response function that maps the linear predictor to the conditional expectation of the response. Generalized additive models (GAM) provide a convenient way to overcome the restriction to purely linear predictors. Therefore, the covariates may be included as flexible nonlinear or spatial functions to avoid potential bias arising from misspecification. Single index models, on the other hand, utilize flexible specifications of the response function and therefore avoid the deteriorating impact of a misspecified response function. However, such single index models are usually restricted to a linear predictor and aim to compensate for potential nonlinear structures only via the estimated response function. We will show that this is insufficient in many cases and present a solution by combining a flexible approach for response function estimation using monotonic P-splines with additive predictors as in GAMs. Our approach is based on maximum likelihood estimation and also allows us to provide confidence intervals of the estimated effects. To compare our approach with existing ones, we conduct extensive simulation studies and apply our approach on two empirical examples, namely the mortality rate in São Paulo due to respiratory diseases based on the Poisson distribution and credit scoring of a German bank with binary responses.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf sg:journal.1327447
45 schema:name Generalized additive models with flexible response functions
46 schema:pagination 1-16
47 schema:productId N9785cf2423e946988200f82d691bb0e6
48 Ndecb6389f1504672a036b7dbb488ddd8
49 Ne6d9335ff05647b693e115bf8a809443
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099739952
51 https://doi.org/10.1007/s11222-017-9799-6
52 schema:sdDatePublished 2019-04-10T22:47
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nbbeaf6fc16e043e9bf120707c74a2d14
55 schema:url http://link.springer.com/10.1007/s11222-017-9799-6
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N298bb7d317644ee8a006caa6805da18f rdf:first sg:person.015172366274.67
60 rdf:rest rdf:nil
61 N9785cf2423e946988200f82d691bb0e6 schema:name doi
62 schema:value 10.1007/s11222-017-9799-6
63 rdf:type schema:PropertyValue
64 N9805f97617f547e881b1f2c5fecc2eb9 rdf:first sg:person.012170317115.32
65 rdf:rest Ncab0e1df62b6447f852d1db30e8f3abd
66 Nbbeaf6fc16e043e9bf120707c74a2d14 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Ncab0e1df62b6447f852d1db30e8f3abd rdf:first sg:person.01272020411.15
69 rdf:rest N298bb7d317644ee8a006caa6805da18f
70 Ndecb6389f1504672a036b7dbb488ddd8 schema:name dimensions_id
71 schema:value pub.1099739952
72 rdf:type schema:PropertyValue
73 Ne6d9335ff05647b693e115bf8a809443 schema:name readcube_id
74 schema:value 897ff661720a0646f771ad0cfc30e21621d81e13f43bfce06d9d21987eb4003f
75 rdf:type schema:PropertyValue
76 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
77 schema:name Economics
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
80 schema:name Econometrics
81 rdf:type schema:DefinedTerm
82 sg:journal.1327447 schema:issn 0960-3174
83 1573-1375
84 schema:name Statistics and Computing
85 rdf:type schema:Periodical
86 sg:person.012170317115.32 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
87 schema:familyName Spiegel
88 schema:givenName Elmar
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012170317115.32
90 rdf:type schema:Person
91 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
92 schema:familyName Kneib
93 schema:givenName Thomas
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
95 rdf:type schema:Person
96 sg:person.015172366274.67 schema:affiliation https://www.grid.ac/institutes/grid.5560.6
97 schema:familyName Otto-Sobotka
98 schema:givenName Fabian
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172366274.67
100 rdf:type schema:Person
101 sg:pub.10.1007/978-1-4899-3242-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705877
102 https://doi.org/10.1007/978-1-4899-3242-6
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-642-34333-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007863731
105 https://doi.org/10.1007/978-3-642-34333-9
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-642-37887-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052799597
108 https://doi.org/10.1007/978-3-642-37887-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10994-009-5119-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047736115
111 https://doi.org/10.1007/s10994-009-5119-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11222-011-9246-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040865164
114 https://doi.org/10.1007/s11222-011-9246-z
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11222-013-9448-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047330060
117 https://doi.org/10.1007/s11222-013-9448-7
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11222-016-9639-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009769076
120 https://doi.org/10.1007/s11222-016-9639-0
121 rdf:type schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1007863731 schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1052799597 schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1109705877 schema:CreativeWork
125 https://doi.org/10.1016/0304-4076(93)90114-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1041696386
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0378-3758(92)90069-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044166738
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.chemolab.2015.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000007392
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.csda.2007.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020414759
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.csda.2011.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027718235
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jeconom.2009.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002460012
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1017/cbo9780511811241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700693
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/01621459.1981.10477729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302552
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/01621459.1997.10474001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305250
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/02664763.2016.1155109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010695896
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/biostatistics/kxl036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046733261
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1111/biom.12666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083811023
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/j.1466-8238.2007.00358.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036408795
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1111/j.1467-9469.2011.00760.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025756845
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1137/0915069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857676
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1177/1471082x1001100302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012562817
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1198/016214502388618861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197953
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1214/07-sts242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049744920
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1214/aos/1176325749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406746
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1214/ss/1177013604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052575245
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1348/000711005x84293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716947
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2307/1403047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473431
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2307/2951556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070145876
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.5560.6 schema:alternateName Carl von Ossietzky University of Oldenburg
174 schema:name Carl von Ossietzky University Oldenburg, Oldenburg, Germany
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
177 schema:name University of Goettingen, Goettingen, Germany
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...