Bayesian nonparametric spectral density estimation using B-spline priors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01

AUTHORS

Matthew C. Edwards, Renate Meyer, Nelson Christensen

ABSTRACT

We present a new Bayesian nonparametric approach to estimating the spectral density of a stationary time series. A nonparametric prior based on a mixture of B-spline distributions is specified and can be regarded as a generalization of the Bernstein polynomial prior of Petrone (Scand J Stat 26:373–393, 1999a; Can J Stat 27:105–126, 1999b) and Choudhuri et al. (J Am Stat Assoc 99(468):1050–1059, 2004). Whittle’s likelihood approximation is used to obtain the pseudo-posterior distribution. This method allows for a data-driven choice of the number of mixture components and the location of knots. Posterior samples are obtained using a Metropolis-within-Gibbs Markov chain Monte Carlo algorithm, and mixing is improved using parallel tempering. We conduct a simulation study to demonstrate that for complicated spectral densities, the B-spline prior provides more accurate Monte Carlo estimates in terms of L1-error and uniform coverage probabilities than the Bernstein polynomial prior. We apply the algorithm to annual mean sunspot data to estimate the solar cycle. Finally, we demonstrate the algorithm’s ability to estimate a spectral density with sharp features, using real gravitational wave detector data from LIGO’s sixth science run, recoloured to match the Advanced LIGO target sensitivity. More... »

PAGES

1-12

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11222-017-9796-9

DOI

http://dx.doi.org/10.1007/s11222-017-9796-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100349076


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carleton College", 
          "id": "https://www.grid.ac/institutes/grid.253692.9", 
          "name": [
            "Department of Statistics, University of Auckland, Auckland, New Zealand", 
            "Physics and Astronomy, Carleton College, Northfield, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Edwards", 
        "givenName": "Matthew C.", 
        "id": "sg:person.016041213011.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041213011.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Auckland", 
          "id": "https://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Department of Statistics, University of Auckland, Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "Renate", 
        "id": "sg:person.010133522211.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133522211.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Observatoire de la C\u00f4te d\u2019Azur", 
          "id": "https://www.grid.ac/institutes/grid.440460.2", 
          "name": [
            "Physics and Astronomy, Carleton College, Northfield, MN, USA", 
            "Artemis, Universit\u00e9 C\u00f4te d\u2019Azur, Observatoire de C\u00f4te d\u2019Azur, CNRS, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Christensen", 
        "givenName": "Nelson", 
        "id": "sg:person.0607020230.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607020230.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.116.241103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004609535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.241103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004609535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2010.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006907907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(98)00148-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007340696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13571-011-0014-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010395105", 
          "https://doi.org/10.1007/s13571-011-0014-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.042003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010480279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.042003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010480279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.061102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013799887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.061102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013799887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b509983h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017003877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b509983h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017003877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.122004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019574196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.122004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019574196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9469.00155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020241793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9469.00155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020241793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2006.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020349621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.03711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020607508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asna.18440211505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020985546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3315494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021188170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2001.00518.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022874551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/30/11/114008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026345563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.85.122007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028359178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.85.122007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028359178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/28/1/015010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029992832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-5614-7_3515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031013171", 
          "https://doi.org/10.1007/978-1-4020-5614-7_3515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.91.084034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032011302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.91.084034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032011302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1034653958", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0320-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034653958", 
          "https://doi.org/10.1007/978-1-4419-0320-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0320-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034653958", 
          "https://doi.org/10.1007/978-1-4419-0320-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-6362(98)00043-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036025544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-013-9354-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036633529", 
          "https://doi.org/10.1007/s11336-013-9354-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9892.1995.tb00241.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037922074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/27/19/194010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038510173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/27/19/194010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038510173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041978250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2010.03.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042815694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/32/2/024001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043226481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10485259808832748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043731438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(95)01744-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048486537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/32/11/115012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049401646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.88.084044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049561204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.88.084044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049561204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1980.10477441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2012.716340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10618600.2013.785293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058368873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/37.1-2.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/57.1.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/82.4.711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/88.4.1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/asp066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/asp066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.064011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060710633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.064011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060710633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1982.12433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061445068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tau.1967.1161901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061520637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000000557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/11-aos955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1024691254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176325631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176342868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v040.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.221101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085745828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.221101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085745828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.141101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092120536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.141101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092120536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.161101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092254426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.161101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092254426"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "We present a new Bayesian nonparametric approach to estimating the spectral density of a stationary time series. A nonparametric prior based on a mixture of B-spline distributions is specified and can be regarded as a generalization of the Bernstein polynomial prior of Petrone (Scand J Stat 26:373\u2013393, 1999a; Can J Stat 27:105\u2013126, 1999b) and Choudhuri et al. (J Am Stat Assoc 99(468):1050\u20131059, 2004). Whittle\u2019s likelihood approximation is used to obtain the pseudo-posterior distribution. This method allows for a data-driven choice of the number of mixture components and the location of knots. Posterior samples are obtained using a Metropolis-within-Gibbs Markov chain Monte Carlo algorithm, and mixing is improved using parallel tempering. We conduct a simulation study to demonstrate that for complicated spectral densities, the B-spline prior provides more accurate Monte Carlo estimates in terms of L1-error and uniform coverage probabilities than the Bernstein polynomial prior. We apply the algorithm to annual mean sunspot data to estimate the solar cycle. Finally, we demonstrate the algorithm\u2019s ability to estimate a spectral density with sharp features, using real gravitational wave detector data from LIGO\u2019s sixth science run, recoloured to match the Advanced LIGO target sensitivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11222-017-9796-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3934184", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "Bayesian nonparametric spectral density estimation using B-spline priors", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "68eb31c6413dc5a7fefaa71ac588a2644ed8fce014c75997f3bce673b92ed04e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11222-017-9796-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100349076"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11222-017-9796-9", 
      "https://app.dimensions.ai/details/publication/pub.1100349076"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11222-017-9796-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-017-9796-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-017-9796-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-017-9796-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-017-9796-9'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      80 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11222-017-9796-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb17f3d10c7724267b8d8c70d57dbc0fb
4 schema:citation sg:pub.10.1007/978-1-4020-5614-7_3515
5 sg:pub.10.1007/978-1-4419-0320-4
6 sg:pub.10.1007/s11336-013-9354-0
7 sg:pub.10.1007/s13571-011-0014-z
8 https://app.dimensions.ai/details/publication/pub.1034653958
9 https://doi.org/10.1002/asna.18440211505
10 https://doi.org/10.1016/0304-4076(95)01744-5
11 https://doi.org/10.1016/j.csda.2010.09.007
12 https://doi.org/10.1016/j.jeconom.2010.03.041
13 https://doi.org/10.1016/j.jspi.2006.05.023
14 https://doi.org/10.1016/s0378-3758(98)00148-7
15 https://doi.org/10.1016/s0966-6362(98)00043-5
16 https://doi.org/10.1039/b509983h
17 https://doi.org/10.1063/1.1699114
18 https://doi.org/10.1080/01621459.1980.10477441
19 https://doi.org/10.1080/01621459.2012.716340
20 https://doi.org/10.1080/10485259808832748
21 https://doi.org/10.1080/10618600.2013.785293
22 https://doi.org/10.1088/0264-9381/27/19/194010
23 https://doi.org/10.1088/0264-9381/28/1/015010
24 https://doi.org/10.1088/0264-9381/32/11/115012
25 https://doi.org/10.1088/0264-9381/32/2/024001
26 https://doi.org/10.1088/0266-5611/30/11/114008
27 https://doi.org/10.1093/biomet/37.1-2.1
28 https://doi.org/10.1093/biomet/57.1.97
29 https://doi.org/10.1093/biomet/82.4.711
30 https://doi.org/10.1093/biomet/88.4.1089
31 https://doi.org/10.1093/biomet/asp066
32 https://doi.org/10.1103/physrevd.84.122004
33 https://doi.org/10.1103/physrevd.85.122007
34 https://doi.org/10.1103/physrevd.88.084044
35 https://doi.org/10.1103/physrevd.90.042003
36 https://doi.org/10.1103/physrevd.91.084034
37 https://doi.org/10.1103/physrevd.92.064011
38 https://doi.org/10.1103/physrevlett.116.061102
39 https://doi.org/10.1103/physrevlett.116.241103
40 https://doi.org/10.1103/physrevlett.118.221101
41 https://doi.org/10.1103/physrevlett.119.141101
42 https://doi.org/10.1103/physrevlett.119.161101
43 https://doi.org/10.1103/physrevlett.57.2607
44 https://doi.org/10.1109/proc.1982.12433
45 https://doi.org/10.1109/tau.1967.1161901
46 https://doi.org/10.1109/tpami.1984.4767596
47 https://doi.org/10.1111/1467-9469.00155
48 https://doi.org/10.1111/1467-9868.00067
49 https://doi.org/10.1111/1467-9868.03711
50 https://doi.org/10.1111/j.0006-341x.2001.00518.x
51 https://doi.org/10.1111/j.1467-9892.1995.tb00241.x
52 https://doi.org/10.1198/016214504000000557
53 https://doi.org/10.1214/11-aos955
54 https://doi.org/10.1214/aos/1024691254
55 https://doi.org/10.1214/aos/1176325631
56 https://doi.org/10.1214/aos/1176342868
57 https://doi.org/10.18637/jss.v040.i05
58 https://doi.org/10.2307/3315494
59 schema:datePublished 2019-01
60 schema:datePublishedReg 2019-01-01
61 schema:description We present a new Bayesian nonparametric approach to estimating the spectral density of a stationary time series. A nonparametric prior based on a mixture of B-spline distributions is specified and can be regarded as a generalization of the Bernstein polynomial prior of Petrone (Scand J Stat 26:373–393, 1999a; Can J Stat 27:105–126, 1999b) and Choudhuri et al. (J Am Stat Assoc 99(468):1050–1059, 2004). Whittle’s likelihood approximation is used to obtain the pseudo-posterior distribution. This method allows for a data-driven choice of the number of mixture components and the location of knots. Posterior samples are obtained using a Metropolis-within-Gibbs Markov chain Monte Carlo algorithm, and mixing is improved using parallel tempering. We conduct a simulation study to demonstrate that for complicated spectral densities, the B-spline prior provides more accurate Monte Carlo estimates in terms of L1-error and uniform coverage probabilities than the Bernstein polynomial prior. We apply the algorithm to annual mean sunspot data to estimate the solar cycle. Finally, we demonstrate the algorithm’s ability to estimate a spectral density with sharp features, using real gravitational wave detector data from LIGO’s sixth science run, recoloured to match the Advanced LIGO target sensitivity.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree true
65 schema:isPartOf sg:journal.1327447
66 schema:name Bayesian nonparametric spectral density estimation using B-spline priors
67 schema:pagination 1-12
68 schema:productId N5eb137fde1d04bc5a1d360777c8dd0e1
69 N9927797fcfab4b5dbb2fdce8da35680b
70 Nd5ac992e1bf742e0a0ca9d3cdeac01e0
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100349076
72 https://doi.org/10.1007/s11222-017-9796-9
73 schema:sdDatePublished 2019-04-10T20:43
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nee38e91242f74b64917ee0c2ecb1793d
76 schema:url http://link.springer.com/10.1007/s11222-017-9796-9
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N1c487d419b39404680ca4240530ce948 rdf:first sg:person.0607020230.86
81 rdf:rest rdf:nil
82 N5eb137fde1d04bc5a1d360777c8dd0e1 schema:name doi
83 schema:value 10.1007/s11222-017-9796-9
84 rdf:type schema:PropertyValue
85 N9927797fcfab4b5dbb2fdce8da35680b schema:name dimensions_id
86 schema:value pub.1100349076
87 rdf:type schema:PropertyValue
88 Nb17f3d10c7724267b8d8c70d57dbc0fb rdf:first sg:person.016041213011.17
89 rdf:rest Nf0707e1bd5e94a0194c1de880958adf8
90 Nd5ac992e1bf742e0a0ca9d3cdeac01e0 schema:name readcube_id
91 schema:value 68eb31c6413dc5a7fefaa71ac588a2644ed8fce014c75997f3bce673b92ed04e
92 rdf:type schema:PropertyValue
93 Nee38e91242f74b64917ee0c2ecb1793d schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nf0707e1bd5e94a0194c1de880958adf8 rdf:first sg:person.010133522211.66
96 rdf:rest N1c487d419b39404680ca4240530ce948
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
101 schema:name Statistics
102 rdf:type schema:DefinedTerm
103 sg:grant.3934184 http://pending.schema.org/fundedItem sg:pub.10.1007/s11222-017-9796-9
104 rdf:type schema:MonetaryGrant
105 sg:journal.1327447 schema:issn 0960-3174
106 1573-1375
107 schema:name Statistics and Computing
108 rdf:type schema:Periodical
109 sg:person.010133522211.66 schema:affiliation https://www.grid.ac/institutes/grid.9654.e
110 schema:familyName Meyer
111 schema:givenName Renate
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133522211.66
113 rdf:type schema:Person
114 sg:person.016041213011.17 schema:affiliation https://www.grid.ac/institutes/grid.253692.9
115 schema:familyName Edwards
116 schema:givenName Matthew C.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041213011.17
118 rdf:type schema:Person
119 sg:person.0607020230.86 schema:affiliation https://www.grid.ac/institutes/grid.440460.2
120 schema:familyName Christensen
121 schema:givenName Nelson
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607020230.86
123 rdf:type schema:Person
124 sg:pub.10.1007/978-1-4020-5614-7_3515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031013171
125 https://doi.org/10.1007/978-1-4020-5614-7_3515
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-1-4419-0320-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034653958
128 https://doi.org/10.1007/978-1-4419-0320-4
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11336-013-9354-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036633529
131 https://doi.org/10.1007/s11336-013-9354-0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s13571-011-0014-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010395105
134 https://doi.org/10.1007/s13571-011-0014-z
135 rdf:type schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1034653958 schema:CreativeWork
137 https://doi.org/10.1002/asna.18440211505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020985546
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0304-4076(95)01744-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486537
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.csda.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006907907
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jeconom.2010.03.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042815694
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jspi.2006.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020349621
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0378-3758(98)00148-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007340696
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0966-6362(98)00043-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036025544
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1039/b509983h schema:sameAs https://app.dimensions.ai/details/publication/pub.1017003877
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1080/01621459.1980.10477441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302264
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/01621459.2012.716340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305966
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/10485259808832748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043731438
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/10618600.2013.785293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058368873
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/0264-9381/27/19/194010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038510173
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/0264-9381/28/1/015010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029992832
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0264-9381/32/11/115012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049401646
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0264-9381/32/2/024001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043226481
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0266-5611/30/11/114008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026345563
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/biomet/37.1-2.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416108
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/biomet/82.4.711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420611
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/biomet/88.4.1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421132
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/biomet/asp066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421782
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevd.84.122004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019574196
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevd.85.122007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028359178
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevd.88.084044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049561204
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevd.90.042003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010480279
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevd.91.084034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032011302
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevd.92.064011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060710633
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.116.061102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013799887
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.116.241103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004609535
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.118.221101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085745828
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.119.141101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092120536
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.119.161101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092254426
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.57.2607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794166
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/proc.1982.12433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061445068
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tau.1967.1161901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061520637
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/1467-9469.00155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020241793
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/1467-9868.00067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041978250
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/1467-9868.03711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020607508
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/j.0006-341x.2001.00518.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022874551
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1111/j.1467-9892.1995.tb00241.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037922074
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1198/016214504000000557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198192
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1214/11-aos955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392449
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1214/aos/1024691254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406068
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1214/aos/1176325631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406725
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1214/aos/1176342868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406993
232 rdf:type schema:CreativeWork
233 https://doi.org/10.18637/jss.v040.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672599
234 rdf:type schema:CreativeWork
235 https://doi.org/10.2307/3315494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021188170
236 rdf:type schema:CreativeWork
237 https://www.grid.ac/institutes/grid.253692.9 schema:alternateName Carleton College
238 schema:name Department of Statistics, University of Auckland, Auckland, New Zealand
239 Physics and Astronomy, Carleton College, Northfield, MN, USA
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.440460.2 schema:alternateName Observatoire de la Côte d’Azur
242 schema:name Artemis, Université Côte d’Azur, Observatoire de Côte d’Azur, CNRS, Nice, France
243 Physics and Astronomy, Carleton College, Northfield, MN, USA
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.9654.e schema:alternateName University of Auckland
246 schema:name Department of Statistics, University of Auckland, Auckland, New Zealand
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...