Bayesian regularisation in geoadditive expectile regression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Elisabeth Waldmann, Fabian Sobotka, Thomas Kneib

ABSTRACT

Regression modelling beyond the mean of the response has found a lot of attention in the last years. Expectile regression is a special and computationally convenient case of this type of models where expectiles offer a quantile-like characterisation of the complete distribution and include the mean as a special case. In the frequentist framework, expectile regression could be combined with covariate effects of quite different forms and in particular nonlinear and spatial effects. We propose Bayesian expectile regression based on the asymmetric normal distribution as an auxiliary likelihood to allow for the additional inclusion of Bayesian regularisation priors for covariates with linear effects. Proposal densities based on iteratively weighted least squares updates for the resulting Markov chain Monte Carlo simulation algorithm are developed and evaluated in both simulations and an application. A special focus of the simulations lies on the evaluation of coverage properties of the Bayesian credible bands and the quantification of the detrimental effect arising from the misspecification of the auxiliary likelihood. More... »

PAGES

1539-1553

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11222-016-9703-9

DOI

http://dx.doi.org/10.1007/s11222-016-9703-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042214388


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waldmann", 
        "givenName": "Elisabeth", 
        "id": "sg:person.0766361631.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766361631.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carl von Ossietzky University of Oldenburg", 
          "id": "https://www.grid.ac/institutes/grid.5560.6", 
          "name": [
            "Carl-von-Ossietzky Universit\u00e4t Oldenburg, Oldenburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sobotka", 
        "givenName": "Fabian", 
        "id": "sg:person.014377412541.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377412541.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Georg-August-Universit\u00e4t G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/mafi.12080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003657551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007863731", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007863731", 
          "https://doi.org/10.1007/978-3-642-34333-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007863731", 
          "https://doi.org/10.1007/978-3-642-34333-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2009.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010677932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2004.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015498897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2012.01050.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019464496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2010.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021359513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10618600.2015.1062014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024101513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2012.695374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026253333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2010.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027215284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4076(03)00100-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030567810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4076(03)00100-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030567810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7152(01)00124-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030794676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10485259608832675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031372352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-011-9297-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034811823", 
          "https://doi.org/10.1007/s11222-011-9297-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-011-9297-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034811823", 
          "https://doi.org/10.1007/s11222-011-9297-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2010.496117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037353710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2016.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038423546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2009.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041587499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxp049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043327623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-009-9158-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662806", 
          "https://doi.org/10.1007/s11222-009-9158-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-009-9158-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662806", 
          "https://doi.org/10.1007/s11222-009-9158-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-009-9158-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043662806", 
          "https://doi.org/10.1007/s11222-009-9158-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x14561155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053813227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x14561155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053813227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/81.4.673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jjfinec/nbn001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059803331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jjfinec/nbu022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059803501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x13480650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064025804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x13480650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064025804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2011.ap09272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/12-ba708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064393267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1911031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069639332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1913643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640867"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "Regression modelling beyond the mean of the response has found a lot of attention in the last years. Expectile regression is a special and computationally convenient case of this type of models where expectiles offer a quantile-like characterisation of the complete distribution and include the mean as a special case. In the frequentist framework, expectile regression could be combined with covariate effects of quite different forms and in particular nonlinear and spatial effects. We propose Bayesian expectile regression based on the asymmetric normal distribution as an auxiliary likelihood to allow for the additional inclusion of Bayesian regularisation priors for covariates with linear effects. Proposal densities based on iteratively weighted least squares updates for the resulting Markov chain Monte Carlo simulation algorithm are developed and evaluated in both simulations and an application. A special focus of the simulations lies on the evaluation of coverage properties of the Bayesian credible bands and the quantification of the detrimental effect arising from the misspecification of the auxiliary likelihood.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11222-016-9703-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Bayesian regularisation in geoadditive expectile regression", 
    "pagination": "1539-1553", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c916b8e3f4b048d5678f925b6527f21650e0963bceb0473e38390a603c70518b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11222-016-9703-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042214388"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11222-016-9703-9", 
      "https://app.dimensions.ai/details/publication/pub.1042214388"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70028_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11222-016-9703-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-016-9703-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-016-9703-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-016-9703-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-016-9703-9'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11222-016-9703-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb58100efda9746a29cae3cc6b98fcf10
4 schema:citation sg:pub.10.1007/978-3-642-34333-9
5 sg:pub.10.1007/s11222-009-9158-3
6 sg:pub.10.1007/s11222-011-9297-1
7 https://app.dimensions.ai/details/publication/pub.1007863731
8 https://doi.org/10.1016/j.csda.2004.10.011
9 https://doi.org/10.1016/j.csda.2009.05.002
10 https://doi.org/10.1016/j.csda.2010.05.006
11 https://doi.org/10.1016/j.csda.2010.11.015
12 https://doi.org/10.1016/j.csda.2016.11.010
13 https://doi.org/10.1016/j.jeconom.2009.01.001
14 https://doi.org/10.1016/s0167-7152(01)00124-9
15 https://doi.org/10.1016/s0304-4076(03)00100-3
16 https://doi.org/10.1080/00949655.2010.496117
17 https://doi.org/10.1080/00949655.2012.695374
18 https://doi.org/10.1080/10485259608832675
19 https://doi.org/10.1080/10618600.2015.1062014
20 https://doi.org/10.1093/biomet/81.4.673
21 https://doi.org/10.1093/biostatistics/kxp049
22 https://doi.org/10.1093/jjfinec/nbn001
23 https://doi.org/10.1093/jjfinec/nbu022
24 https://doi.org/10.1111/j.1467-9876.2012.01050.x
25 https://doi.org/10.1111/mafi.12080
26 https://doi.org/10.1177/1471082x13480650
27 https://doi.org/10.1177/1471082x14561155
28 https://doi.org/10.1198/jasa.2011.ap09272
29 https://doi.org/10.1214/12-ba708
30 https://doi.org/10.1214/ss/1038425655
31 https://doi.org/10.2307/1911031
32 https://doi.org/10.2307/1913643
33 schema:datePublished 2017-11
34 schema:datePublishedReg 2017-11-01
35 schema:description Regression modelling beyond the mean of the response has found a lot of attention in the last years. Expectile regression is a special and computationally convenient case of this type of models where expectiles offer a quantile-like characterisation of the complete distribution and include the mean as a special case. In the frequentist framework, expectile regression could be combined with covariate effects of quite different forms and in particular nonlinear and spatial effects. We propose Bayesian expectile regression based on the asymmetric normal distribution as an auxiliary likelihood to allow for the additional inclusion of Bayesian regularisation priors for covariates with linear effects. Proposal densities based on iteratively weighted least squares updates for the resulting Markov chain Monte Carlo simulation algorithm are developed and evaluated in both simulations and an application. A special focus of the simulations lies on the evaluation of coverage properties of the Bayesian credible bands and the quantification of the detrimental effect arising from the misspecification of the auxiliary likelihood.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N3d8031061a0342dbb3660b3d76809b56
40 Nd4e948692cc440aca28972a4c74f211e
41 sg:journal.1327447
42 schema:name Bayesian regularisation in geoadditive expectile regression
43 schema:pagination 1539-1553
44 schema:productId N4823cb2b073f419ab2a0b52827a3ad92
45 N4ef1d9a80d3242ab84bf34c85f757dc0
46 Nbf53ce61b294454590de6a485bc59b25
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042214388
48 https://doi.org/10.1007/s11222-016-9703-9
49 schema:sdDatePublished 2019-04-11T12:36
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Na894a16e881b4f6c8c45f3671e7175ff
52 schema:url https://link.springer.com/10.1007%2Fs11222-016-9703-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N28ec3bc2aa7841379f7c649d84be8cf3 rdf:first sg:person.01272020411.15
57 rdf:rest rdf:nil
58 N3d8031061a0342dbb3660b3d76809b56 schema:volumeNumber 27
59 rdf:type schema:PublicationVolume
60 N4823cb2b073f419ab2a0b52827a3ad92 schema:name doi
61 schema:value 10.1007/s11222-016-9703-9
62 rdf:type schema:PropertyValue
63 N4ef1d9a80d3242ab84bf34c85f757dc0 schema:name readcube_id
64 schema:value c916b8e3f4b048d5678f925b6527f21650e0963bceb0473e38390a603c70518b
65 rdf:type schema:PropertyValue
66 N9a98275309e04c42a4b846e9881f2bfe rdf:first sg:person.014377412541.95
67 rdf:rest N28ec3bc2aa7841379f7c649d84be8cf3
68 Na894a16e881b4f6c8c45f3671e7175ff schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nb58100efda9746a29cae3cc6b98fcf10 rdf:first sg:person.0766361631.64
71 rdf:rest N9a98275309e04c42a4b846e9881f2bfe
72 Nbf53ce61b294454590de6a485bc59b25 schema:name dimensions_id
73 schema:value pub.1042214388
74 rdf:type schema:PropertyValue
75 Nd4e948692cc440aca28972a4c74f211e schema:issueNumber 6
76 rdf:type schema:PublicationIssue
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
81 schema:name Statistics
82 rdf:type schema:DefinedTerm
83 sg:journal.1327447 schema:issn 0960-3174
84 1573-1375
85 schema:name Statistics and Computing
86 rdf:type schema:Periodical
87 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
88 schema:familyName Kneib
89 schema:givenName Thomas
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
91 rdf:type schema:Person
92 sg:person.014377412541.95 schema:affiliation https://www.grid.ac/institutes/grid.5560.6
93 schema:familyName Sobotka
94 schema:givenName Fabian
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377412541.95
96 rdf:type schema:Person
97 sg:person.0766361631.64 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
98 schema:familyName Waldmann
99 schema:givenName Elisabeth
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766361631.64
101 rdf:type schema:Person
102 sg:pub.10.1007/978-3-642-34333-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007863731
103 https://doi.org/10.1007/978-3-642-34333-9
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11222-009-9158-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043662806
106 https://doi.org/10.1007/s11222-009-9158-3
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11222-011-9297-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034811823
109 https://doi.org/10.1007/s11222-011-9297-1
110 rdf:type schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1007863731 schema:CreativeWork
112 https://doi.org/10.1016/j.csda.2004.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015498897
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.csda.2009.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010677932
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.csda.2010.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027215284
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.csda.2010.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021359513
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.csda.2016.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038423546
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jeconom.2009.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041587499
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0167-7152(01)00124-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030794676
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0304-4076(03)00100-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030567810
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/00949655.2010.496117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037353710
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/00949655.2012.695374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026253333
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/10485259608832675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031372352
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/10618600.2015.1062014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024101513
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/biomet/81.4.673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420515
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/biostatistics/kxp049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043327623
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/jjfinec/nbn001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059803331
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/jjfinec/nbu022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059803501
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/j.1467-9876.2012.01050.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019464496
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/mafi.12080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003657551
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1177/1471082x13480650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064025804
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1177/1471082x14561155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053813227
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1198/jasa.2011.ap09272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200650
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1214/12-ba708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393267
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2307/1911031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639332
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2307/1913643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640867
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
163 schema:name Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.5560.6 schema:alternateName Carl von Ossietzky University of Oldenburg
166 schema:name Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
169 schema:name Georg-August-Universität Göttingen, Göttingen, Germany
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...