Correlation and variable importance in random forests View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05

AUTHORS

Baptiste Gregorutti, Bertrand Michel, Philippe Saint-Pierre

ABSTRACT

This paper is about variable selection with the random forests algorithm in presence of correlated predictors. In high-dimensional regression or classification frameworks, variable selection is a difficult task, that becomes even more challenging in the presence of highly correlated predictors. Firstly we provide a theoretical study of the permutation importance measure for an additive regression model. This allows us to describe how the correlation between predictors impacts the permutation importance. Our results motivate the use of the recursive feature elimination (RFE) algorithm for variable selection in this context. This algorithm recursively eliminates the variables using permutation importance measure as a ranking criterion. Next various simulation experiments illustrate the efficiency of the RFE algorithm for selecting a small number of variables together with a good prediction error. Finally, this selection algorithm is tested on the Landsat Satellite data from the UCI Machine Learning Repository. More... »

PAGES

659-678

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11222-016-9646-1

DOI

http://dx.doi.org/10.1007/s11222-016-9646-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024423228


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.463964.a", 
          "name": [
            "Safety Line, 15 Rue Jean-Baptiste Berlier, 75013, Paris, France", 
            "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e, Universit\u00e9 Pierre et Marie Curie, 4 Place Jussieu, 75252, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gregorutti", 
        "givenName": "Baptiste", 
        "id": "sg:person.010337330732.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337330732.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.463964.a", 
          "name": [
            "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e, Universit\u00e9 Pierre et Marie Curie, 4 Place Jussieu, 75252, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michel", 
        "givenName": "Bertrand", 
        "id": "sg:person.016617520265.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617520265.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.463964.a", 
          "name": [
            "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e, Universit\u00e9 Pierre et Marie Curie, 4 Place Jussieu, 75252, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saint-Pierre", 
        "givenName": "Philippe", 
        "id": "sg:person.014720173732.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014720173732.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004108043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156594", 
          "https://doi.org/10.1186/1471-2105-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004156594", 
          "https://doi.org/10.1186/1471-2105-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2013.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005599215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74272-2_115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009024625", 
          "https://doi.org/10.1007/978-3-540-74272-2_115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74272-2_115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009024625", 
          "https://doi.org/10.1007/978-3-540-74272-2_115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2010.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015985534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-006-0040-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018091708", 
          "https://doi.org/10.1007/s10115-006-0040-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-006-0040-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018091708", 
          "https://doi.org/10.1007/s10115-006-0040-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-5-81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019670626", 
          "https://doi.org/10.1186/1471-2105-5-81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00063-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020136638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0028210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020997827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2010.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021405554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031014012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1557-4679.1008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032915999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-25966-4_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033920644", 
          "https://doi.org/10.1007/978-3-540-25966-4_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-25966-4_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033920644", 
          "https://doi.org/10.1007/978-3-540-25966-4_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.102102699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034359388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2012.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040900298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2011.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041570818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbr016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042608935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042870683", 
          "https://doi.org/10.1186/1471-2105-9-307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2005.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044061459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047298303", 
          "https://doi.org/10.1186/1471-2105-11-110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012487302797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573168", 
          "https://doi.org/10.1023/a:1012487302797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2007.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049823578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050285412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2015.1036994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058306386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2012.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/tast.2009.08199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064201606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-ejs039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/15-aos1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064395231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109489408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109489408", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05", 
    "datePublishedReg": "2017-05-01", 
    "description": "This paper is about variable selection with the random forests algorithm in presence of correlated predictors. In high-dimensional regression or classification frameworks, variable selection is a difficult task, that becomes even more challenging in the presence of highly correlated predictors. Firstly we provide a theoretical study of the permutation importance measure for an additive regression model. This allows us to describe how the correlation between predictors impacts the permutation importance. Our results motivate the use of the recursive feature elimination (RFE) algorithm for variable selection in this context. This algorithm recursively eliminates the variables using permutation importance measure as a ranking criterion. Next various simulation experiments illustrate the efficiency of the RFE algorithm for selecting a small number of variables together with a good prediction error. Finally, this selection algorithm is tested on the Landsat Satellite data from the UCI Machine Learning Repository.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11222-016-9646-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Correlation and variable importance in random forests", 
    "pagination": "659-678", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "745ab80f41148386f3b4e29013b41d60bf365a5d5f845c75a47ac803cabe62a2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11222-016-9646-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024423228"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11222-016-9646-1", 
      "https://app.dimensions.ai/details/publication/pub.1024423228"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000586.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11222-016-9646-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-016-9646-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-016-9646-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-016-9646-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-016-9646-1'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11222-016-9646-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1d05a1c114ac43a7993b64ba630afbb1
4 schema:citation sg:pub.10.1007/978-3-540-25966-4_33
5 sg:pub.10.1007/978-3-540-74272-2_115
6 sg:pub.10.1007/bf00058655
7 sg:pub.10.1007/s10115-006-0040-8
8 sg:pub.10.1023/a:1010933404324
9 sg:pub.10.1023/a:1012487302797
10 sg:pub.10.1186/1471-2105-11-110
11 sg:pub.10.1186/1471-2105-5-81
12 sg:pub.10.1186/1471-2105-7-3
13 sg:pub.10.1186/1471-2105-9-307
14 https://app.dimensions.ai/details/publication/pub.1109489408
15 https://doi.org/10.1002/9780470316436
16 https://doi.org/10.1016/j.chemolab.2010.12.004
17 https://doi.org/10.1016/j.csda.2005.12.018
18 https://doi.org/10.1016/j.csda.2007.08.015
19 https://doi.org/10.1016/j.csda.2012.09.020
20 https://doi.org/10.1016/j.jmva.2011.05.004
21 https://doi.org/10.1016/j.jspi.2013.05.019
22 https://doi.org/10.1016/j.patrec.2010.03.014
23 https://doi.org/10.1016/s0004-3702(97)00043-x
24 https://doi.org/10.1016/s0004-3702(97)00063-5
25 https://doi.org/10.1073/pnas.102102699
26 https://doi.org/10.1080/01621459.2015.1036994
27 https://doi.org/10.1093/bib/bbr016
28 https://doi.org/10.1093/bioinformatics/btp331
29 https://doi.org/10.1093/bioinformatics/btr300
30 https://doi.org/10.1109/tcbb.2012.33
31 https://doi.org/10.1111/j.1467-9868.2010.00740.x
32 https://doi.org/10.1198/tast.2009.08199
33 https://doi.org/10.1214/07-ejs039
34 https://doi.org/10.1214/15-aos1321
35 https://doi.org/10.1371/journal.pone.0028210
36 https://doi.org/10.2202/1557-4679.1008
37 schema:datePublished 2017-05
38 schema:datePublishedReg 2017-05-01
39 schema:description This paper is about variable selection with the random forests algorithm in presence of correlated predictors. In high-dimensional regression or classification frameworks, variable selection is a difficult task, that becomes even more challenging in the presence of highly correlated predictors. Firstly we provide a theoretical study of the permutation importance measure for an additive regression model. This allows us to describe how the correlation between predictors impacts the permutation importance. Our results motivate the use of the recursive feature elimination (RFE) algorithm for variable selection in this context. This algorithm recursively eliminates the variables using permutation importance measure as a ranking criterion. Next various simulation experiments illustrate the efficiency of the RFE algorithm for selecting a small number of variables together with a good prediction error. Finally, this selection algorithm is tested on the Landsat Satellite data from the UCI Machine Learning Repository.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N60d5e47530fa48969c295fd52c18c154
44 Nbba0ec28c151489a918be67c05bee693
45 sg:journal.1327447
46 schema:name Correlation and variable importance in random forests
47 schema:pagination 659-678
48 schema:productId N49e27651dda14f56b13609a602448656
49 Nd02168d533014707852e7164904acb28
50 Ndc5609dd86d64d96a0181160973e5501
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024423228
52 https://doi.org/10.1007/s11222-016-9646-1
53 schema:sdDatePublished 2019-04-10T20:08
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Na386cfc8bba24d45b21964ab040fb3f6
56 schema:url http://link.springer.com/10.1007%2Fs11222-016-9646-1
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N1d05a1c114ac43a7993b64ba630afbb1 rdf:first sg:person.010337330732.96
61 rdf:rest N931737d7339443679e0f0e005510f7e0
62 N2164a041e8784610a8a68fd424ac5eff rdf:first sg:person.014720173732.65
63 rdf:rest rdf:nil
64 N49e27651dda14f56b13609a602448656 schema:name doi
65 schema:value 10.1007/s11222-016-9646-1
66 rdf:type schema:PropertyValue
67 N60d5e47530fa48969c295fd52c18c154 schema:volumeNumber 27
68 rdf:type schema:PublicationVolume
69 N931737d7339443679e0f0e005510f7e0 rdf:first sg:person.016617520265.86
70 rdf:rest N2164a041e8784610a8a68fd424ac5eff
71 Na386cfc8bba24d45b21964ab040fb3f6 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nbba0ec28c151489a918be67c05bee693 schema:issueNumber 3
74 rdf:type schema:PublicationIssue
75 Nd02168d533014707852e7164904acb28 schema:name dimensions_id
76 schema:value pub.1024423228
77 rdf:type schema:PropertyValue
78 Ndc5609dd86d64d96a0181160973e5501 schema:name readcube_id
79 schema:value 745ab80f41148386f3b4e29013b41d60bf365a5d5f845c75a47ac803cabe62a2
80 rdf:type schema:PropertyValue
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:journal.1327447 schema:issn 0960-3174
88 1573-1375
89 schema:name Statistics and Computing
90 rdf:type schema:Periodical
91 sg:person.010337330732.96 schema:affiliation https://www.grid.ac/institutes/grid.463964.a
92 schema:familyName Gregorutti
93 schema:givenName Baptiste
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337330732.96
95 rdf:type schema:Person
96 sg:person.014720173732.65 schema:affiliation https://www.grid.ac/institutes/grid.463964.a
97 schema:familyName Saint-Pierre
98 schema:givenName Philippe
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014720173732.65
100 rdf:type schema:Person
101 sg:person.016617520265.86 schema:affiliation https://www.grid.ac/institutes/grid.463964.a
102 schema:familyName Michel
103 schema:givenName Bertrand
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617520265.86
105 rdf:type schema:Person
106 sg:pub.10.1007/978-3-540-25966-4_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033920644
107 https://doi.org/10.1007/978-3-540-25966-4_33
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-540-74272-2_115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009024625
110 https://doi.org/10.1007/978-3-540-74272-2_115
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
113 https://doi.org/10.1007/bf00058655
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10115-006-0040-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018091708
116 https://doi.org/10.1007/s10115-006-0040-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
119 https://doi.org/10.1023/a:1010933404324
120 rdf:type schema:CreativeWork
121 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
122 https://doi.org/10.1023/a:1012487302797
123 rdf:type schema:CreativeWork
124 sg:pub.10.1186/1471-2105-11-110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047298303
125 https://doi.org/10.1186/1471-2105-11-110
126 rdf:type schema:CreativeWork
127 sg:pub.10.1186/1471-2105-5-81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019670626
128 https://doi.org/10.1186/1471-2105-5-81
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/1471-2105-7-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004156594
131 https://doi.org/10.1186/1471-2105-7-3
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1471-2105-9-307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042870683
134 https://doi.org/10.1186/1471-2105-9-307
135 rdf:type schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1109489408 schema:CreativeWork
137 https://doi.org/10.1002/9780470316436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109489408
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.chemolab.2010.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015985534
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.csda.2005.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044061459
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.csda.2007.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049823578
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.csda.2012.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040900298
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jmva.2011.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041570818
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jspi.2013.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005599215
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.patrec.2010.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021405554
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0004-3702(97)00043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014012
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0004-3702(97)00063-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020136638
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.102102699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034359388
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/01621459.2015.1036994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306386
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bib/bbr016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042608935
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bioinformatics/btp331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050285412
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/bioinformatics/btr300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004108043
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tcbb.2012.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541044
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/j.1467-9868.2010.00740.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000696823
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1198/tast.2009.08199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064201606
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1214/07-ejs039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389851
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1214/15-aos1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064395231
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1371/journal.pone.0028210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020997827
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2202/1557-4679.1008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032915999
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.463964.a schema:alternateName Laboratoire de Statistique Théorique et Appliquée
182 schema:name Laboratoire de Statistique Théorique et Appliquée, Université Pierre et Marie Curie, 4 Place Jussieu, 75252, Paris Cedex 05, France
183 Safety Line, 15 Rue Jean-Baptiste Berlier, 75013, Paris, France
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...