Markov-switching generalized additive models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

Roland Langrock, Thomas Kneib, Richard Glennie, Théo Michelot

ABSTRACT

We consider Markov-switching regression models, i.e. models for time series regression analyses where the functional relationship between covariates and response is subject to regime switching controlled by an unobservable Markov chain. Building on the powerful hidden Markov model machinery and the methods for penalized B-splines routinely used in regression analyses, we develop a framework for nonparametrically estimating the functional form of the effect of the covariates in such a regression model, assuming an additive structure of the predictor. The resulting class of Markov-switching generalized additive models is immensely flexible, and contains as special cases the common parametric Markov-switching regression models and also generalized additive and generalized linear models. The feasibility of the suggested maximum penalized likelihood approach is demonstrated by simulation. We further illustrate the approach using two real data applications, modelling (i) how sales data depend on advertising spending and (ii) how energy price in Spain depends on the Euro/Dollar exchange rate. More... »

PAGES

259-270

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11222-015-9620-3

DOI

http://dx.doi.org/10.1007/s11222-015-9620-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050598401


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bielefeld University", 
          "id": "https://www.grid.ac/institutes/grid.7491.b", 
          "name": [
            "Bielefeld University, Bielefeld, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langrock", 
        "givenName": "Roland", 
        "id": "sg:person.01001544430.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001544430.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "University of G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of St Andrews", 
          "id": "https://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "University of St Andrews, St Andrews, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glennie", 
        "givenName": "Richard", 
        "id": "sg:person.01335066762.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335066762.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
          "id": "https://www.grid.ac/institutes/grid.435013.0", 
          "name": [
            "INSA de Rouen, Saint-\u00c9tienne-du-Rouvray, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michelot", 
        "givenName": "Th\u00e9o", 
        "id": "sg:person.01103507725.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103507725.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/insr.12041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006688322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007863731", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007863731", 
          "https://doi.org/10.1007/978-3-642-34333-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-34333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007863731", 
          "https://doi.org/10.1007/978-3-642-34333-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10485252.2014.941364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016019198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016397815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016397815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02664769922098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022130353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9892.00305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023217652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023692168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0097-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026469730", 
          "https://doi.org/10.1007/s00180-007-0097-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0097-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026469730", 
          "https://doi.org/10.1007/s00180-007-0097-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(73)90002-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039327254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2007.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041937485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2005.00510.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043199556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/eum0000000004971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047244726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0063-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048886683", 
          "https://doi.org/10.1007/s00180-007-0063-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0063-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048886683", 
          "https://doi.org/10.1007/s00180-007-0063-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2010.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051238952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/6187.6192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051261248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-014-9523-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052784361", 
          "https://doi.org/10.1007/s11222-014-9523-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-014-9523-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052784361", 
          "https://doi.org/10.1007/s11222-014-9523-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1992.10476248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/294759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058604585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000001437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2010.tm09165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mksc.1060.0208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064712709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705929", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109725086", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420010893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725086"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "We consider Markov-switching regression models, i.e. models for time series regression analyses where the functional relationship between covariates and response is subject to regime switching controlled by an unobservable Markov chain. Building on the powerful hidden Markov model machinery and the methods for penalized B-splines routinely used in regression analyses, we develop a framework for nonparametrically estimating the functional form of the effect of the covariates in such a regression model, assuming an additive structure of the predictor. The resulting class of Markov-switching generalized additive models is immensely flexible, and contains as special cases the common parametric Markov-switching regression models and also generalized additive and generalized linear models. The feasibility of the suggested maximum penalized likelihood approach is demonstrated by simulation. We further illustrate the approach using two real data applications, modelling (i) how sales data depend on advertising spending and (ii) how energy price in Spain depends on the Euro/Dollar exchange rate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11222-015-9620-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Markov-switching generalized additive models", 
    "pagination": "259-270", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f10882d959ff5771aeb9d76a4179ed68d165ad44ab15b513048cee6f11d1e6c4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11222-015-9620-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050598401"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11222-015-9620-3", 
      "https://app.dimensions.ai/details/publication/pub.1050598401"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11222-015-9620-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-015-9620-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-015-9620-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-015-9620-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-015-9620-3'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11222-015-9620-3 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N41475cf2d7b548c39d31be9acc7d0774
4 schema:citation sg:pub.10.1007/978-1-4899-4541-9
5 sg:pub.10.1007/978-3-642-34333-9
6 sg:pub.10.1007/s00180-007-0063-y
7 sg:pub.10.1007/s00180-007-0097-1
8 sg:pub.10.1007/s11222-014-9523-8
9 https://app.dimensions.ai/details/publication/pub.1007863731
10 https://app.dimensions.ai/details/publication/pub.1109705929
11 https://app.dimensions.ai/details/publication/pub.1109725086
12 https://doi.org/10.1016/0304-4076(73)90002-x
13 https://doi.org/10.1016/j.csda.2010.06.015
14 https://doi.org/10.1016/j.jeconom.2005.07.005
15 https://doi.org/10.1016/j.jeconom.2007.10.002
16 https://doi.org/10.1080/01621459.1992.10476248
17 https://doi.org/10.1080/02664769922098
18 https://doi.org/10.1080/10485252.2014.941364
19 https://doi.org/10.1086/294759
20 https://doi.org/10.1108/eum0000000004971
21 https://doi.org/10.1111/1467-9892.00305
22 https://doi.org/10.1111/biom.12282
23 https://doi.org/10.1111/insr.12041
24 https://doi.org/10.1111/j.1467-9876.2005.00510.x
25 https://doi.org/10.1145/6187.6192
26 https://doi.org/10.1198/016214506000001437
27 https://doi.org/10.1198/jasa.2010.tm09165
28 https://doi.org/10.1201/9781420010893
29 https://doi.org/10.1214/ss/1038425655
30 https://doi.org/10.1287/mksc.1060.0208
31 https://doi.org/10.2307/1912559
32 schema:datePublished 2017-01
33 schema:datePublishedReg 2017-01-01
34 schema:description We consider Markov-switching regression models, i.e. models for time series regression analyses where the functional relationship between covariates and response is subject to regime switching controlled by an unobservable Markov chain. Building on the powerful hidden Markov model machinery and the methods for penalized B-splines routinely used in regression analyses, we develop a framework for nonparametrically estimating the functional form of the effect of the covariates in such a regression model, assuming an additive structure of the predictor. The resulting class of Markov-switching generalized additive models is immensely flexible, and contains as special cases the common parametric Markov-switching regression models and also generalized additive and generalized linear models. The feasibility of the suggested maximum penalized likelihood approach is demonstrated by simulation. We further illustrate the approach using two real data applications, modelling (i) how sales data depend on advertising spending and (ii) how energy price in Spain depends on the Euro/Dollar exchange rate.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N22a431461062410c98de33c89b24a829
39 N8a6f83dde9994140aa2a93fb34663aeb
40 sg:journal.1327447
41 schema:name Markov-switching generalized additive models
42 schema:pagination 259-270
43 schema:productId N32a2bf91b0fc4764a788a7d371525218
44 N8d22afff4ba2424188b9cf777be78990
45 Nafd2371234234de8b5df7966737da879
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050598401
47 https://doi.org/10.1007/s11222-015-9620-3
48 schema:sdDatePublished 2019-04-11T13:09
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N8b76a7c1fb374f119f1e7e298ebd6c17
51 schema:url https://link.springer.com/10.1007%2Fs11222-015-9620-3
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N1e60f94c4a5b44ada81954242f364b76 rdf:first sg:person.01335066762.34
56 rdf:rest Na43aec9b39f8441994560487de96ef59
57 N22a431461062410c98de33c89b24a829 schema:volumeNumber 27
58 rdf:type schema:PublicationVolume
59 N32a2bf91b0fc4764a788a7d371525218 schema:name dimensions_id
60 schema:value pub.1050598401
61 rdf:type schema:PropertyValue
62 N35b60575c024439cb4e00c98f5520670 rdf:first sg:person.01272020411.15
63 rdf:rest N1e60f94c4a5b44ada81954242f364b76
64 N41475cf2d7b548c39d31be9acc7d0774 rdf:first sg:person.01001544430.24
65 rdf:rest N35b60575c024439cb4e00c98f5520670
66 N8a6f83dde9994140aa2a93fb34663aeb schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N8b76a7c1fb374f119f1e7e298ebd6c17 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N8d22afff4ba2424188b9cf777be78990 schema:name doi
71 schema:value 10.1007/s11222-015-9620-3
72 rdf:type schema:PropertyValue
73 Na43aec9b39f8441994560487de96ef59 rdf:first sg:person.01103507725.12
74 rdf:rest rdf:nil
75 Nafd2371234234de8b5df7966737da879 schema:name readcube_id
76 schema:value f10882d959ff5771aeb9d76a4179ed68d165ad44ab15b513048cee6f11d1e6c4
77 rdf:type schema:PropertyValue
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
82 schema:name Statistics
83 rdf:type schema:DefinedTerm
84 sg:journal.1327447 schema:issn 0960-3174
85 1573-1375
86 schema:name Statistics and Computing
87 rdf:type schema:Periodical
88 sg:person.01001544430.24 schema:affiliation https://www.grid.ac/institutes/grid.7491.b
89 schema:familyName Langrock
90 schema:givenName Roland
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001544430.24
92 rdf:type schema:Person
93 sg:person.01103507725.12 schema:affiliation https://www.grid.ac/institutes/grid.435013.0
94 schema:familyName Michelot
95 schema:givenName Théo
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103507725.12
97 rdf:type schema:Person
98 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
99 schema:familyName Kneib
100 schema:givenName Thomas
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
102 rdf:type schema:Person
103 sg:person.01335066762.34 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
104 schema:familyName Glennie
105 schema:givenName Richard
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335066762.34
107 rdf:type schema:Person
108 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
109 https://doi.org/10.1007/978-1-4899-4541-9
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-642-34333-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007863731
112 https://doi.org/10.1007/978-3-642-34333-9
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00180-007-0063-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048886683
115 https://doi.org/10.1007/s00180-007-0063-y
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00180-007-0097-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026469730
118 https://doi.org/10.1007/s00180-007-0097-1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11222-014-9523-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052784361
121 https://doi.org/10.1007/s11222-014-9523-8
122 rdf:type schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1007863731 schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1109705929 schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1109725086 schema:CreativeWork
126 https://doi.org/10.1016/0304-4076(73)90002-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039327254
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.csda.2010.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051238952
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jeconom.2005.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016397815
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jeconom.2007.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041937485
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/01621459.1992.10476248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304332
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/02664769922098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022130353
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1080/10485252.2014.941364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016019198
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1086/294759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058604585
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1108/eum0000000004971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047244726
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/1467-9892.00305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023217652
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/biom.12282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023692168
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/insr.12041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006688322
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1111/j.1467-9876.2005.00510.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043199556
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/6187.6192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051261248
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1198/016214506000001437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198608
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1198/jasa.2010.tm09165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200594
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1201/9781420010893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725086
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1287/mksc.1060.0208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064712709
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2307/1912559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640176
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.11914.3c schema:alternateName University of St Andrews
167 schema:name University of St Andrews, St Andrews, UK
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.435013.0 schema:alternateName Institut National des Sciences Appliquées de Rouen
170 schema:name INSA de Rouen, Saint-Étienne-du-Rouvray, France
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
173 schema:name University of Göttingen, Göttingen, Germany
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.7491.b schema:alternateName Bielefeld University
176 schema:name Bielefeld University, Bielefeld, Germany
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...