Simultaneous inference in structured additive conditional copula regression models: a unifying Bayesian approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Nadja Klein, Thomas Kneib

ABSTRACT

While most regression models focus on explaining distributional aspects of one single response variable alone, interest in modern statistical applications has recently shifted towards simultaneously studying multiple response variables as well as their dependence structure. A particularly useful tool for pursuing such an analysis are copula-based regression models since they enable the separation of the marginal response distributions and the dependence structure summarised in a specific copula model. However, so far copula-based regression models have mostly been relying on two-step approaches where the marginal distributions are determined first whereas the copula structure is studied in a second step after plugging in the estimated marginal distributions. Moreover, the parameters of the copula are mostly treated as a constant not related to covariates and most regression specifications for the marginals are restricted to purely linear predictors. We therefore propose simultaneous Bayesian inference for both the marginal distributions and the copula using computationally efficient Markov chain Monte Carlo simulation techniques. In addition, we replace the commonly used linear predictor by a generic structured additive predictor comprising for example nonlinear effects of continuous covariates, spatial effects or random effects and furthermore allow to make the copula parameters covariate-dependent. To facilitate Bayesian inference, we construct proposal densities for a Metropolis–Hastings algorithm relying on quadratic approximations to the full conditionals of regression coefficients avoiding manual tuning. The performance of the resulting Bayesian estimates is evaluated in simulations comparing our approach with penalised likelihood inference, studying the choice of a specific copula model based on the deviance information criterion, and comparing a simultaneous approach with a two-step procedure. Furthermore, the flexibility of Bayesian conditional copula regression models is illustrated in two applications on childhood undernutrition and macroecology. More... »

PAGES

841-860

Journal

TITLE

Statistics and Computing

ISSUE

4

VOLUME

26

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11222-015-9573-6

DOI

http://dx.doi.org/10.1007/s11222-015-9573-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002492065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Chair of Statistics, Georg-August-University G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "Nadja", 
        "id": "sg:person.01206257221.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206257221.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Chair of Statistics, Georg-August-University G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/rssc.12090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007088810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2004.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015498897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7908-2413-1_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015728133", 
          "https://doi.org/10.1007/978-3-7908-2413-1_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7908-2413-1_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015728133", 
          "https://doi.org/10.1007/978-3-7908-2413-1_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023470890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018509429360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023622139", 
          "https://doi.org/10.1023/a:1018509429360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(01)00277-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025499070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/sjos.12018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025678563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2008.1005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027412406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2012.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028597410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-statistics-062713-085831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028662591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2010.01472.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028839474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-2354.2006.00387.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029527568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-015-9581-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030360552", 
          "https://doi.org/10.1007/s11222-015-9581-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jae.1197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030523305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/13-ejs866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031353432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032278310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2010.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033230263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2008.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040545678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2005.00510.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043199556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-013-9421-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049032254", 
          "https://doi.org/10.1007/s11222-013-9421-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2007.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050456536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051068606", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203492024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051068606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1962.10480664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1996.10476954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2014.912955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058306234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/93.3.537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-aos666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/14-aos1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064394655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21314/jor.2003.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068977630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199533022.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098748222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b13150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109727365"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "While most regression models focus on explaining distributional aspects of one single response variable alone, interest in modern statistical applications has recently shifted towards simultaneously studying multiple response variables as well as their dependence structure. A particularly useful tool for pursuing such an analysis are copula-based regression models since they enable the separation of the marginal response distributions and the dependence structure summarised in a specific copula model. However, so far copula-based regression models have mostly been relying on two-step approaches where the marginal distributions are determined first whereas the copula structure is studied in a second step after plugging in the estimated marginal distributions. Moreover, the parameters of the copula are mostly treated as a constant not related to covariates and most regression specifications for the marginals are restricted to purely linear predictors. We therefore propose simultaneous Bayesian inference for both the marginal distributions and the copula using computationally efficient Markov chain Monte Carlo simulation techniques. In addition, we replace the commonly used linear predictor by a generic structured additive predictor comprising for example nonlinear effects of continuous covariates, spatial effects or random effects and furthermore allow to make the copula parameters covariate-dependent. To facilitate Bayesian inference, we construct proposal densities for a Metropolis\u2013Hastings algorithm relying on quadratic approximations to the full conditionals of regression coefficients avoiding manual tuning. The performance of the resulting Bayesian estimates is evaluated in simulations comparing our approach with penalised likelihood inference, studying the choice of a specific copula model based on the deviance information criterion, and comparing a simultaneous approach with a two-step procedure. Furthermore, the flexibility of Bayesian conditional copula regression models is illustrated in two applications on childhood undernutrition and macroecology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11222-015-9573-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Simultaneous inference in structured additive conditional copula regression models: a unifying Bayesian approach", 
    "pagination": "841-860", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0bdd52794ccefd7646835deea7109900578165fe2af7d7d23e8d5925e38f18df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11222-015-9573-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002492065"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11222-015-9573-6", 
      "https://app.dimensions.ai/details/publication/pub.1002492065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11222-015-9573-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-015-9573-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-015-9573-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-015-9573-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-015-9573-6'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11222-015-9573-6 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N9524a01f7e764ed9bb9e156225ca730d
4 schema:citation sg:pub.10.1007/978-3-7908-2413-1_9
5 sg:pub.10.1007/s11222-013-9421-5
6 sg:pub.10.1007/s11222-015-9581-6
7 sg:pub.10.1023/a:1018509429360
8 https://app.dimensions.ai/details/publication/pub.1051068606
9 https://doi.org/10.1002/jae.1197
10 https://doi.org/10.1016/j.csda.2004.10.011
11 https://doi.org/10.1016/j.csda.2007.01.018
12 https://doi.org/10.1016/j.csda.2008.01.002
13 https://doi.org/10.1016/j.csda.2008.05.032
14 https://doi.org/10.1016/j.csda.2010.11.010
15 https://doi.org/10.1016/j.insmatheco.2008.07.006
16 https://doi.org/10.1016/j.jmva.2012.03.010
17 https://doi.org/10.1016/s0378-3758(01)00277-4
18 https://doi.org/10.1080/01621459.1962.10480664
19 https://doi.org/10.1080/01621459.1996.10476954
20 https://doi.org/10.1080/01621459.2014.912955
21 https://doi.org/10.1093/acprof:oso/9780199533022.001.0001
22 https://doi.org/10.1093/biomet/93.3.537
23 https://doi.org/10.1098/rspb.2008.1005
24 https://doi.org/10.1111/j.1467-9876.2005.00510.x
25 https://doi.org/10.1111/j.1468-2354.2006.00387.x
26 https://doi.org/10.1111/j.1541-0420.2010.01472.x
27 https://doi.org/10.1111/rssc.12090
28 https://doi.org/10.1111/sjos.12018
29 https://doi.org/10.1146/annurev-statistics-062713-085831
30 https://doi.org/10.1201/9780203492024
31 https://doi.org/10.1201/b13150
32 https://doi.org/10.1214/08-aos666
33 https://doi.org/10.1214/13-ejs866
34 https://doi.org/10.1214/14-aos1244
35 https://doi.org/10.21314/jor.2003.082
36 schema:datePublished 2016-07
37 schema:datePublishedReg 2016-07-01
38 schema:description While most regression models focus on explaining distributional aspects of one single response variable alone, interest in modern statistical applications has recently shifted towards simultaneously studying multiple response variables as well as their dependence structure. A particularly useful tool for pursuing such an analysis are copula-based regression models since they enable the separation of the marginal response distributions and the dependence structure summarised in a specific copula model. However, so far copula-based regression models have mostly been relying on two-step approaches where the marginal distributions are determined first whereas the copula structure is studied in a second step after plugging in the estimated marginal distributions. Moreover, the parameters of the copula are mostly treated as a constant not related to covariates and most regression specifications for the marginals are restricted to purely linear predictors. We therefore propose simultaneous Bayesian inference for both the marginal distributions and the copula using computationally efficient Markov chain Monte Carlo simulation techniques. In addition, we replace the commonly used linear predictor by a generic structured additive predictor comprising for example nonlinear effects of continuous covariates, spatial effects or random effects and furthermore allow to make the copula parameters covariate-dependent. To facilitate Bayesian inference, we construct proposal densities for a Metropolis–Hastings algorithm relying on quadratic approximations to the full conditionals of regression coefficients avoiding manual tuning. The performance of the resulting Bayesian estimates is evaluated in simulations comparing our approach with penalised likelihood inference, studying the choice of a specific copula model based on the deviance information criterion, and comparing a simultaneous approach with a two-step procedure. Furthermore, the flexibility of Bayesian conditional copula regression models is illustrated in two applications on childhood undernutrition and macroecology.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N87731e8237844336b763f620bfcce16c
43 Nbffab12034e64967867350e31e8f8a9b
44 sg:journal.1327447
45 schema:name Simultaneous inference in structured additive conditional copula regression models: a unifying Bayesian approach
46 schema:pagination 841-860
47 schema:productId N024d41c1a8a046a5ac54c8de16f3c458
48 N0c852c850f8b4810a498eb4c1cf138d8
49 N117cdd1b4c6d4396886ca4b6231c324b
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002492065
51 https://doi.org/10.1007/s11222-015-9573-6
52 schema:sdDatePublished 2019-04-11T09:55
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N795e26a8c4c74065a402856ac2ea9ce8
55 schema:url https://link.springer.com/10.1007%2Fs11222-015-9573-6
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N024d41c1a8a046a5ac54c8de16f3c458 schema:name doi
60 schema:value 10.1007/s11222-015-9573-6
61 rdf:type schema:PropertyValue
62 N0c852c850f8b4810a498eb4c1cf138d8 schema:name dimensions_id
63 schema:value pub.1002492065
64 rdf:type schema:PropertyValue
65 N117cdd1b4c6d4396886ca4b6231c324b schema:name readcube_id
66 schema:value 0bdd52794ccefd7646835deea7109900578165fe2af7d7d23e8d5925e38f18df
67 rdf:type schema:PropertyValue
68 N47b3ffdf36964fa4803d4764a495fd34 rdf:first sg:person.01272020411.15
69 rdf:rest rdf:nil
70 N795e26a8c4c74065a402856ac2ea9ce8 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N87731e8237844336b763f620bfcce16c schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 N9524a01f7e764ed9bb9e156225ca730d rdf:first sg:person.01206257221.18
75 rdf:rest N47b3ffdf36964fa4803d4764a495fd34
76 Nbffab12034e64967867350e31e8f8a9b schema:volumeNumber 26
77 rdf:type schema:PublicationVolume
78 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
79 schema:name Economics
80 rdf:type schema:DefinedTerm
81 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
82 schema:name Econometrics
83 rdf:type schema:DefinedTerm
84 sg:journal.1327447 schema:issn 0960-3174
85 1573-1375
86 schema:name Statistics and Computing
87 rdf:type schema:Periodical
88 sg:person.01206257221.18 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
89 schema:familyName Klein
90 schema:givenName Nadja
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206257221.18
92 rdf:type schema:Person
93 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
94 schema:familyName Kneib
95 schema:givenName Thomas
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-7908-2413-1_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015728133
99 https://doi.org/10.1007/978-3-7908-2413-1_9
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11222-013-9421-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049032254
102 https://doi.org/10.1007/s11222-013-9421-5
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11222-015-9581-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030360552
105 https://doi.org/10.1007/s11222-015-9581-6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1023/a:1018509429360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023622139
108 https://doi.org/10.1023/a:1018509429360
109 rdf:type schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1051068606 schema:CreativeWork
111 https://doi.org/10.1002/jae.1197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030523305
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.csda.2004.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015498897
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.csda.2007.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050456536
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.csda.2008.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032278310
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.csda.2008.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023470890
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.csda.2010.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033230263
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.insmatheco.2008.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040545678
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jmva.2012.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028597410
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0378-3758(01)00277-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025499070
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/01621459.1962.10480664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299685
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/01621459.1996.10476954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305088
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/01621459.2014.912955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306234
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/acprof:oso/9780199533022.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098748222
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/biomet/93.3.537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421510
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1098/rspb.2008.1005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027412406
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1111/j.1467-9876.2005.00510.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043199556
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1111/j.1468-2354.2006.00387.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029527568
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1111/j.1541-0420.2010.01472.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028839474
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1111/rssc.12090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007088810
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/sjos.12018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025678563
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1146/annurev-statistics-062713-085831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028662591
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1201/9780203492024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051068606
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1201/b13150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109727365
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1214/08-aos666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390239
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1214/13-ejs866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031353432
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1214/14-aos1244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064394655
162 rdf:type schema:CreativeWork
163 https://doi.org/10.21314/jor.2003.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068977630
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
166 schema:name Chair of Statistics, Georg-August-University Göttingen, Göttingen, Germany
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...