Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

María Xosé Rodríguez-Álvarez, Dae-Jin Lee, Thomas Kneib, María Durbán, Paul Eilers

ABSTRACT

A new computational algorithm for estimating the smoothing parameters of a multidimensional penalized spline generalized linear model with anisotropic penalty is presented. This new proposal is based on the mixed model representation of a multidimensional P-spline, in which the smoothing parameter for each covariate is expressed in terms of variance components. On the basis of penalized quasi-likelihood methods, closed-form expressions for the estimates of the variance components are obtained. This formulation leads to an efficient implementation that considerably reduces the computational burden. The proposed algorithm can be seen as a generalization of the algorithm by Schall (1991)—for variance components estimation—to deal with non-standard structures of the covariance matrix of the random effects. The practical performance of the proposed algorithm is evaluated by means of simulations, and comparisons with alternative methods are made on the basis of the mean square error criterion and the computing time. Finally, we illustrate our proposal with the analysis of two real datasets: a two dimensional example of historical records of monthly precipitation data in USA and a three dimensional one of mortality data from respiratory disease according to the age at death, the year of death and the month of death. More... »

PAGES

941-957

References to SciGraph publications

  • 2013-05. Straightforward intermediate rank tensor product smoothing in mixed models in STATISTICS AND COMPUTING
  • 2003-05. Smoothing and mixed models in COMPUTATIONAL STATISTICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11222-014-9464-2

    DOI

    http://dx.doi.org/10.1007/s11222-014-9464-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050669624


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Vigo", 
              "id": "https://www.grid.ac/institutes/grid.6312.6", 
              "name": [
                "Department of Statistics and Operations Research, University of Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rodr\u00edguez-\u00c1lvarez", 
            "givenName": "Mar\u00eda Xos\u00e9", 
            "id": "sg:person.0641023320.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641023320.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Basque Center for Applied Mathematics", 
              "id": "https://www.grid.ac/institutes/grid.462072.5", 
              "name": [
                "CSIRO Computational Informatics, Clayton, VIC, Australia", 
                "BCAM - Basque Center for Applied Mathematics, Bilbao, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dae-Jin", 
            "id": "sg:person.016007750067.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007750067.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of G\u00f6ttingen", 
              "id": "https://www.grid.ac/institutes/grid.7450.6", 
              "name": [
                "Chair of Statistics, Georg-August-Universit\u00e4t G\u00f6ttingen, G\u00f6ttingen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kneib", 
            "givenName": "Thomas", 
            "id": "sg:person.01272020411.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Statistics, Universidad Carlos III de Madrid, Legan\u00e9s, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durb\u00e1n", 
            "givenName": "Mar\u00eda", 
            "id": "sg:person.0661217017.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661217017.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Erasmus University Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.5645.2", 
              "name": [
                "Erasmus Medical Center, Rotterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eilers", 
            "givenName": "Paul", 
            "id": "sg:person.01152676370.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152676370.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/1467-9868.00183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007964683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2010.00749.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009149692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2010.00749.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009149692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9868.00374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013469701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2004.07.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013828664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11222-012-9314-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022245451", 
              "https://doi.org/10.1007/s11222-012-9314-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11222-012-9314-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022245451", 
              "https://doi.org/10.1007/s11222-012-9314-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1541-0420.2006.00574.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028992075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2012.11.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038222995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-7439(03)00029-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039703064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-7439(03)00029-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039703064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1038425655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041521657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2007.00646.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042539123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2006.00543.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053453333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2006.00543.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053453333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001800300142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054512812", 
              "https://doi.org/10.1007/s001800300142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001800300142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054512812", 
              "https://doi.org/10.1007/s001800300142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1977.10480998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058301880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1996.10476971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058305105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/78.4.719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059420206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1471082x1001100104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064025767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1471082x1001100104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064025767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1191/1471082x02st039ob", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064159046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1191/1471082x02st039ob", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064159046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/016214503000000729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064198073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/016214504000000980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064198230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/1061860043010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064199409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/106186008x287328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064199616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2531147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069976605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511755453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098667268"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-09", 
        "datePublishedReg": "2015-09-01", 
        "description": "A new computational algorithm for estimating the smoothing parameters of a multidimensional penalized spline generalized linear model with anisotropic penalty is presented. This new proposal is based on the mixed model representation of a multidimensional P-spline, in which the smoothing parameter for each covariate is expressed in terms of variance components. On the basis of penalized quasi-likelihood methods, closed-form expressions for the estimates of the variance components are obtained. This formulation leads to an efficient implementation that considerably reduces the computational burden. The proposed algorithm can be seen as a generalization of the algorithm by Schall (1991)\u2014for variance components estimation\u2014to deal with non-standard structures of the covariance matrix of the random effects. The practical performance of the proposed algorithm is evaluated by means of simulations, and comparisons with alternative methods are made on the basis of the mean square error criterion and the computing time. Finally, we illustrate our proposal with the analysis of two real datasets: a two dimensional example of historical records of monthly precipitation data in USA and a three dimensional one of mortality data from respiratory disease according to the age at death, the year of death and the month of death.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11222-014-9464-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2439972", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327447", 
            "issn": [
              "0960-3174", 
              "1573-1375"
            ], 
            "name": "Statistics and Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm", 
        "pagination": "941-957", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f15f1c94d58ac50de056d9907a850784aaa2604d94aafbbe0876258dea260b87"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11222-014-9464-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050669624"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11222-014-9464-2", 
          "https://app.dimensions.ai/details/publication/pub.1050669624"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54307_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11222-014-9464-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-014-9464-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-014-9464-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-014-9464-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-014-9464-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    175 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11222-014-9464-2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4e0e755258a848a1be4c7044e81b90ce
    4 schema:citation sg:pub.10.1007/s001800300142
    5 sg:pub.10.1007/s11222-012-9314-z
    6 https://doi.org/10.1016/j.csda.2004.07.008
    7 https://doi.org/10.1016/j.csda.2012.11.013
    8 https://doi.org/10.1016/s0169-7439(03)00029-7
    9 https://doi.org/10.1017/cbo9780511755453
    10 https://doi.org/10.1080/01621459.1977.10480998
    11 https://doi.org/10.1080/01621459.1996.10476971
    12 https://doi.org/10.1093/biomet/78.4.719
    13 https://doi.org/10.1111/1467-9868.00183
    14 https://doi.org/10.1111/1467-9868.00374
    15 https://doi.org/10.1111/j.1467-9868.2006.00543.x
    16 https://doi.org/10.1111/j.1467-9868.2007.00646.x
    17 https://doi.org/10.1111/j.1467-9868.2010.00749.x
    18 https://doi.org/10.1111/j.1541-0420.2006.00574.x
    19 https://doi.org/10.1177/1471082x1001100104
    20 https://doi.org/10.1191/1471082x02st039ob
    21 https://doi.org/10.1198/016214503000000729
    22 https://doi.org/10.1198/016214504000000980
    23 https://doi.org/10.1198/1061860043010
    24 https://doi.org/10.1198/106186008x287328
    25 https://doi.org/10.1214/ss/1038425655
    26 https://doi.org/10.2307/2531147
    27 schema:datePublished 2015-09
    28 schema:datePublishedReg 2015-09-01
    29 schema:description A new computational algorithm for estimating the smoothing parameters of a multidimensional penalized spline generalized linear model with anisotropic penalty is presented. This new proposal is based on the mixed model representation of a multidimensional P-spline, in which the smoothing parameter for each covariate is expressed in terms of variance components. On the basis of penalized quasi-likelihood methods, closed-form expressions for the estimates of the variance components are obtained. This formulation leads to an efficient implementation that considerably reduces the computational burden. The proposed algorithm can be seen as a generalization of the algorithm by Schall (1991)—for variance components estimation—to deal with non-standard structures of the covariance matrix of the random effects. The practical performance of the proposed algorithm is evaluated by means of simulations, and comparisons with alternative methods are made on the basis of the mean square error criterion and the computing time. Finally, we illustrate our proposal with the analysis of two real datasets: a two dimensional example of historical records of monthly precipitation data in USA and a three dimensional one of mortality data from respiratory disease according to the age at death, the year of death and the month of death.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf Na7d748d813334a7499e9592c22e08716
    34 Nc8307874bd724dc692c8ab50cfee67b1
    35 sg:journal.1327447
    36 schema:name Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm
    37 schema:pagination 941-957
    38 schema:productId N221241444f1648a6b6219dde40c68e80
    39 N5a81c75f116a4c2785caa741c5b3dd31
    40 Na4975a549abe43e885dfe6cd6a36b9bd
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050669624
    42 https://doi.org/10.1007/s11222-014-9464-2
    43 schema:sdDatePublished 2019-04-11T10:17
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Na19776c0897547eda0207c214a8953d2
    46 schema:url https://link.springer.com/10.1007%2Fs11222-014-9464-2
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N11fca27be2014919a0b35e8019aadc5c rdf:first sg:person.016007750067.43
    51 rdf:rest Ne695214aa95f475f84cb8549c8993208
    52 N221241444f1648a6b6219dde40c68e80 schema:name dimensions_id
    53 schema:value pub.1050669624
    54 rdf:type schema:PropertyValue
    55 N4e0e755258a848a1be4c7044e81b90ce rdf:first sg:person.0641023320.97
    56 rdf:rest N11fca27be2014919a0b35e8019aadc5c
    57 N5a81c75f116a4c2785caa741c5b3dd31 schema:name readcube_id
    58 schema:value f15f1c94d58ac50de056d9907a850784aaa2604d94aafbbe0876258dea260b87
    59 rdf:type schema:PropertyValue
    60 N652bd353688b4a8285aa52113405fceb rdf:first sg:person.0661217017.73
    61 rdf:rest Nd5be2e83c21a46b6bed2f3e63ef2951b
    62 Na19776c0897547eda0207c214a8953d2 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Na4975a549abe43e885dfe6cd6a36b9bd schema:name doi
    65 schema:value 10.1007/s11222-014-9464-2
    66 rdf:type schema:PropertyValue
    67 Na7d748d813334a7499e9592c22e08716 schema:volumeNumber 25
    68 rdf:type schema:PublicationVolume
    69 Nc8307874bd724dc692c8ab50cfee67b1 schema:issueNumber 5
    70 rdf:type schema:PublicationIssue
    71 Nd5be2e83c21a46b6bed2f3e63ef2951b rdf:first sg:person.01152676370.02
    72 rdf:rest rdf:nil
    73 Ne695214aa95f475f84cb8549c8993208 rdf:first sg:person.01272020411.15
    74 rdf:rest N652bd353688b4a8285aa52113405fceb
    75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information and Computing Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Artificial Intelligence and Image Processing
    80 rdf:type schema:DefinedTerm
    81 sg:grant.2439972 http://pending.schema.org/fundedItem sg:pub.10.1007/s11222-014-9464-2
    82 rdf:type schema:MonetaryGrant
    83 sg:journal.1327447 schema:issn 0960-3174
    84 1573-1375
    85 schema:name Statistics and Computing
    86 rdf:type schema:Periodical
    87 sg:person.01152676370.02 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
    88 schema:familyName Eilers
    89 schema:givenName Paul
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152676370.02
    91 rdf:type schema:Person
    92 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
    93 schema:familyName Kneib
    94 schema:givenName Thomas
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
    96 rdf:type schema:Person
    97 sg:person.016007750067.43 schema:affiliation https://www.grid.ac/institutes/grid.462072.5
    98 schema:familyName Lee
    99 schema:givenName Dae-Jin
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007750067.43
    101 rdf:type schema:Person
    102 sg:person.0641023320.97 schema:affiliation https://www.grid.ac/institutes/grid.6312.6
    103 schema:familyName Rodríguez-Álvarez
    104 schema:givenName María Xosé
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641023320.97
    106 rdf:type schema:Person
    107 sg:person.0661217017.73 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    108 schema:familyName Durbán
    109 schema:givenName María
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661217017.73
    111 rdf:type schema:Person
    112 sg:pub.10.1007/s001800300142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054512812
    113 https://doi.org/10.1007/s001800300142
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s11222-012-9314-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022245451
    116 https://doi.org/10.1007/s11222-012-9314-z
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.csda.2004.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013828664
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.csda.2012.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038222995
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/s0169-7439(03)00029-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039703064
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1017/cbo9780511755453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667268
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1080/01621459.1977.10480998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301880
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1080/01621459.1996.10476971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305105
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1093/biomet/78.4.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420206
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1111/1467-9868.00183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007964683
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1111/1467-9868.00374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013469701
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1111/j.1467-9868.2006.00543.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053453333
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1111/j.1467-9868.2007.00646.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042539123
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1111/j.1467-9868.2010.00749.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009149692
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1111/j.1541-0420.2006.00574.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028992075
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1177/1471082x1001100104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064025767
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1191/1471082x02st039ob schema:sameAs https://app.dimensions.ai/details/publication/pub.1064159046
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1198/016214503000000729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198073
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1198/016214504000000980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198230
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1198/1061860043010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199409
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1198/106186008x287328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199616
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.2307/2531147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069976605
    159 rdf:type schema:CreativeWork
    160 https://www.grid.ac/institutes/grid.462072.5 schema:alternateName Basque Center for Applied Mathematics
    161 schema:name BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
    162 CSIRO Computational Informatics, Clayton, VIC, Australia
    163 rdf:type schema:Organization
    164 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
    165 schema:name Erasmus Medical Center, Rotterdam, The Netherlands
    166 rdf:type schema:Organization
    167 https://www.grid.ac/institutes/grid.6312.6 schema:alternateName University of Vigo
    168 schema:name Department of Statistics and Operations Research, University of Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
    169 rdf:type schema:Organization
    170 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
    171 schema:name Chair of Statistics, Georg-August-Universität Göttingen, Göttingen, Germany
    172 rdf:type schema:Organization
    173 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
    174 schema:name Department of Statistics, Universidad Carlos III de Madrid, Leganés, Spain
    175 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...