Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Sylvia Frühwirth-Schnatter, Rudolf Frühwirth, Leonhard Held, Håvard Rue

ABSTRACT

The article considers Bayesian analysis of hierarchical models for count, binomial and multinomial data using efficient MCMC sampling procedures. To this end, an improved method of auxiliary mixture sampling is proposed. In contrast to previously proposed samplers the method uses a bounded number of latent variables per observation, independent of the intensity of the underlying Poisson process in the case of count data, or of the number of experiments in the case of binomial and multinomial data. The bounded number of latent variables results in a more general error distribution, which is a negative log-Gamma distribution with arbitrary integer shape parameter. The required approximations of these distributions by Gaussian mixtures have been computed. Overall, the improvement leads to a substantial increase in efficiency of auxiliary mixture sampling for highly structured models. The method is illustrated for finite mixtures of generalized linear models and an epidemiological case study. More... »

PAGES

479

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11222-008-9109-4

DOI

http://dx.doi.org/10.1007/s11222-008-9109-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017712707


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Department of Applied Statistics and Econometrics, Johannes Kepler Universit\u00e4t Linz, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fr\u00fchwirth-Schnatter", 
        "givenName": "Sylvia", 
        "id": "sg:person.0702362777.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702362777.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of High Energy Physics", 
          "id": "https://www.grid.ac/institutes/grid.450258.e", 
          "name": [
            "Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fr\u00fchwirth", 
        "givenName": "Rudolf", 
        "id": "sg:person.016163733307.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163733307.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.7400.3", 
          "name": [
            "Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Held", 
        "givenName": "Leonhard", 
        "id": "sg:person.01327705427.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327705427.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rue", 
        "givenName": "H\u00e5vard", 
        "id": "sg:person.015462331061.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015462331061.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00140869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004597255", 
          "https://doi.org/10.1007/bf00140869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00140869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004597255", 
          "https://doi.org/10.1007/bf00140869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177011137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009965252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009988938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10485250211383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013876418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017796707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2000.00013.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021065249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2006.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023493082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038573900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1435-5957.2007.00125.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041150055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041821886", 
          "https://doi.org/10.1007/bf00116466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/7.4.308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043067538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9469.00308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043921685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1049195233", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3071-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049195233", 
          "https://doi.org/10.1007/978-1-4757-3071-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3071-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049195233", 
          "https://doi.org/10.1007/978-1-4757-3071-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051068606", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203492024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051068606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280206071642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053785082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280206071642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053785082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1993.10476321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/93.4.827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0962280205sm389oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0962280205sm389oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/1061860031329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186008x289849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/06-ba105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2685466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070058653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511811852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098677423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103194915", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491899", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491899", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "The article considers Bayesian analysis of hierarchical models for count, binomial and multinomial data using efficient MCMC sampling procedures. To this end, an improved method of auxiliary mixture sampling is proposed. In contrast to previously proposed samplers the method uses a bounded number of latent variables per observation, independent of the intensity of the underlying Poisson process in the case of count data, or of the number of experiments in the case of binomial and multinomial data. The bounded number of latent variables results in a more general error distribution, which is a negative log-Gamma distribution with arbitrary integer shape parameter. The required approximations of these distributions by Gaussian mixtures have been computed. Overall, the improvement leads to a substantial increase in efficiency of auxiliary mixture sampling for highly structured models. The method is illustrated for finite mixtures of generalized linear models and an epidemiological case study.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11222-008-9109-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580396", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data", 
    "pagination": "479", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5464edc28bad6e3cf55ec159211b4742ba2e96fbffaaff85ec9035a24e997f12"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11222-008-9109-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017712707"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11222-008-9109-4", 
      "https://app.dimensions.ai/details/publication/pub.1017712707"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89785_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11222-008-9109-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-008-9109-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-008-9109-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-008-9109-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-008-9109-4'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11222-008-9109-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N9ce013733e434fed866b415c7c98d8f0
4 schema:citation sg:pub.10.1007/978-1-4757-3071-5
5 sg:pub.10.1007/bf00116466
6 sg:pub.10.1007/bf00140869
7 https://app.dimensions.ai/details/publication/pub.1049195233
8 https://app.dimensions.ai/details/publication/pub.1051068606
9 https://app.dimensions.ai/details/publication/pub.1103194915
10 https://app.dimensions.ai/details/publication/pub.1109491899
11 https://doi.org/10.1016/j.csda.2006.10.006
12 https://doi.org/10.1016/j.csda.2008.02.020
13 https://doi.org/10.1016/j.csda.2008.03.028
14 https://doi.org/10.1017/cbo9780511811852
15 https://doi.org/10.1080/01621459.1993.10476321
16 https://doi.org/10.1080/10485250211383
17 https://doi.org/10.1093/biomet/93.4.827
18 https://doi.org/10.1093/comjnl/7.4.308
19 https://doi.org/10.1111/1467-9469.00308
20 https://doi.org/10.1111/1467-9876.00280
21 https://doi.org/10.1111/j.0006-341x.2000.00013.x
22 https://doi.org/10.1111/j.1435-5957.2007.00125.x
23 https://doi.org/10.1177/0962280206071642
24 https://doi.org/10.1191/0962280205sm389oa
25 https://doi.org/10.1198/1061860031329
26 https://doi.org/10.1198/106186008x289849
27 https://doi.org/10.1201/9780203492024
28 https://doi.org/10.1214/06-ba105
29 https://doi.org/10.1214/ss/1177011137
30 https://doi.org/10.2307/2685466
31 schema:datePublished 2009-12
32 schema:datePublishedReg 2009-12-01
33 schema:description The article considers Bayesian analysis of hierarchical models for count, binomial and multinomial data using efficient MCMC sampling procedures. To this end, an improved method of auxiliary mixture sampling is proposed. In contrast to previously proposed samplers the method uses a bounded number of latent variables per observation, independent of the intensity of the underlying Poisson process in the case of count data, or of the number of experiments in the case of binomial and multinomial data. The bounded number of latent variables results in a more general error distribution, which is a negative log-Gamma distribution with arbitrary integer shape parameter. The required approximations of these distributions by Gaussian mixtures have been computed. Overall, the improvement leads to a substantial increase in efficiency of auxiliary mixture sampling for highly structured models. The method is illustrated for finite mixtures of generalized linear models and an epidemiological case study.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N0f70f20fde224bb698962457eb5fd087
38 Nd1f2bf3d07164d60a230fdd9d1c49d47
39 sg:journal.1327447
40 schema:name Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data
41 schema:pagination 479
42 schema:productId N4e80b449cdbc4074a1322f741f7a3f0a
43 N77909af2dbdf4022b64e71589d84ada7
44 Ne6065f00d2d745838175a271f2de5cfb
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017712707
46 https://doi.org/10.1007/s11222-008-9109-4
47 schema:sdDatePublished 2019-04-11T09:49
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N0e2b0b2d9fac4a9b9676838887758442
50 schema:url https://link.springer.com/10.1007%2Fs11222-008-9109-4
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N03e702a51f184d6d92fd4d604217d264 rdf:first sg:person.016163733307.34
55 rdf:rest N4950b4c4fb4e48c4a864f6e6c98eaeae
56 N0e2b0b2d9fac4a9b9676838887758442 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N0f70f20fde224bb698962457eb5fd087 schema:volumeNumber 19
59 rdf:type schema:PublicationVolume
60 N4950b4c4fb4e48c4a864f6e6c98eaeae rdf:first sg:person.01327705427.14
61 rdf:rest N8eec14372d884f44a403ea0c56ab40ee
62 N4e80b449cdbc4074a1322f741f7a3f0a schema:name dimensions_id
63 schema:value pub.1017712707
64 rdf:type schema:PropertyValue
65 N77909af2dbdf4022b64e71589d84ada7 schema:name doi
66 schema:value 10.1007/s11222-008-9109-4
67 rdf:type schema:PropertyValue
68 N8eec14372d884f44a403ea0c56ab40ee rdf:first sg:person.015462331061.03
69 rdf:rest rdf:nil
70 N9ce013733e434fed866b415c7c98d8f0 rdf:first sg:person.0702362777.46
71 rdf:rest N03e702a51f184d6d92fd4d604217d264
72 Nd1f2bf3d07164d60a230fdd9d1c49d47 schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 Ne6065f00d2d745838175a271f2de5cfb schema:name readcube_id
75 schema:value 5464edc28bad6e3cf55ec159211b4742ba2e96fbffaaff85ec9035a24e997f12
76 rdf:type schema:PropertyValue
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
81 schema:name Statistics
82 rdf:type schema:DefinedTerm
83 sg:grant.7580396 http://pending.schema.org/fundedItem sg:pub.10.1007/s11222-008-9109-4
84 rdf:type schema:MonetaryGrant
85 sg:journal.1327447 schema:issn 0960-3174
86 1573-1375
87 schema:name Statistics and Computing
88 rdf:type schema:Periodical
89 sg:person.01327705427.14 schema:affiliation https://www.grid.ac/institutes/grid.7400.3
90 schema:familyName Held
91 schema:givenName Leonhard
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327705427.14
93 rdf:type schema:Person
94 sg:person.015462331061.03 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
95 schema:familyName Rue
96 schema:givenName Håvard
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015462331061.03
98 rdf:type schema:Person
99 sg:person.016163733307.34 schema:affiliation https://www.grid.ac/institutes/grid.450258.e
100 schema:familyName Frühwirth
101 schema:givenName Rudolf
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163733307.34
103 rdf:type schema:Person
104 sg:person.0702362777.46 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
105 schema:familyName Frühwirth-Schnatter
106 schema:givenName Sylvia
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702362777.46
108 rdf:type schema:Person
109 sg:pub.10.1007/978-1-4757-3071-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049195233
110 https://doi.org/10.1007/978-1-4757-3071-5
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf00116466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041821886
113 https://doi.org/10.1007/bf00116466
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf00140869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004597255
116 https://doi.org/10.1007/bf00140869
117 rdf:type schema:CreativeWork
118 https://app.dimensions.ai/details/publication/pub.1049195233 schema:CreativeWork
119 https://app.dimensions.ai/details/publication/pub.1051068606 schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1103194915 schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1109491899 schema:CreativeWork
122 https://doi.org/10.1016/j.csda.2006.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023493082
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.csda.2008.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017796707
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.csda.2008.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009988938
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/cbo9780511811852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098677423
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/01621459.1993.10476321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304405
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/10485250211383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013876418
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1093/biomet/93.4.827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421536
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/comjnl/7.4.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043067538
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/1467-9469.00308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043921685
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1111/1467-9876.00280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038573900
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1111/j.0006-341x.2000.00013.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021065249
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/j.1435-5957.2007.00125.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041150055
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1177/0962280206071642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053785082
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1191/0962280205sm389oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155237
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1198/1061860031329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199358
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1198/106186008x289849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199624
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1201/9780203492024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051068606
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1214/06-ba105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389455
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1214/ss/1177011137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009965252
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2307/2685466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070058653
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.450258.e schema:alternateName Institute of High Energy Physics
163 schema:name Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
166 schema:name Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.7400.3 schema:alternateName University of Zurich
169 schema:name Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.9970.7 schema:alternateName Johannes Kepler University of Linz
172 schema:name Department of Applied Statistics and Econometrics, Johannes Kepler Universität Linz, Linz, Austria
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...