Bayesian estimation for percolation models of disease spread in plant populations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12

AUTHORS

G. J. Gibson, W. Otten, J. A. N. Filipe, A. Cook, G. Marion, C. A. Gilligan

ABSTRACT

Statistical methods are formulated for fitting and testing percolation-based, spatio-temporal models that are generally applicable to biological or physical processes that evolve in spatially distributed populations. The approach is developed and illustrated in the context of the spread of Rhizoctonia solani, a fungal pathogen, in radish but is readily generalized to other scenarios. The particular model considered represents processes of primary and secondary infection between nearest-neighbour hosts in a lattice, and time-varying susceptibility of the hosts. Bayesian methods for fitting the model to observations of disease spread through space and time in replicate populations are developed. These use Markov chain Monte Carlo methods to overcome the problems associated with partial observation of the process. We also consider how model testing can be achieved by embedding classical methods within the Bayesian analysis. In particular we show how a residual process, with known sampling distribution, can be defined. Model fit is then examined by generating samples from the posterior distribution of the residual process, to which a classical test for consistency with the known distribution is applied, enabling the posterior distribution of the P-value of the test used to be estimated. For the Rhizoctonia-radish system the methods confirm the findings of earlier non-spatial analyses regarding the dynamics of disease transmission and yield new evidence of environmental heterogeneity in the replicate experiments. More... »

PAGES

391-402

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11222-006-0019-z

DOI

http://dx.doi.org/10.1007/s11222-006-0019-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039431575


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heriot-Watt University", 
          "id": "https://www.grid.ac/institutes/grid.9531.e", 
          "name": [
            "Department of Actuarial Mathematics & Statistics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, EH14 4AS, Edinburgh"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gibson", 
        "givenName": "G. J.", 
        "id": "sg:person.01114306473.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114306473.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otten", 
        "givenName": "W.", 
        "id": "sg:person.01060547000.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060547000.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK", 
            "Infectious Disease Epidemiology Unit, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London"
          ], 
          "type": "Organization"
        }, 
        "familyName": "N. Filipe", 
        "givenName": "J. A.", 
        "id": "sg:person.01230245277.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230245277.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomathematics and Statistics Scotland", 
          "id": "https://www.grid.ac/institutes/grid.450566.4", 
          "name": [
            "Department of Actuarial Mathematics & Statistics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, EH14 4AS, Edinburgh", 
            "Biomathematics & Statistics Scotland, James Clerk Maxwell Building, The King\u2019s Buildings, EH9 3JZ, Edinburgh"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "A.", 
        "id": "sg:person.01034341733.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341733.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomathematics and Statistics Scotland", 
          "id": "https://www.grid.ac/institutes/grid.450566.4", 
          "name": [
            "Biomathematics & Statistics Scotland, James Clerk Maxwell Building, The King\u2019s Buildings, EH9 3JZ, Edinburgh"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marion", 
        "givenName": "G.", 
        "id": "sg:person.01255330025.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255330025.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilligan", 
        "givenName": "C. A.", 
        "id": "sg:person.01356417173.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356417173.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/cbo9780511525537.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000865449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/02-0564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001225260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1999.0841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006771472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1998.0354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008275802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1996.0116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008367876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(86)90041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010934889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(86)90041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010934889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.bulm.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027759050", 
          "https://doi.org/10.1016/j.bulm.2003.09.002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-985x.00125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029354261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-985x.00125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029354261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1469-8137.2000.00660.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032793503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/2.1.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038025658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2004.01086.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041456344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1006/bulm.2001.0234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043013909", 
          "https://doi.org/10.1006/bulm.2001.0234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043768453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043768453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-1122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044356952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-005-1310-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047762707", 
          "https://doi.org/10.1007/s11222-005-1310-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-005-1310-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047762707", 
          "https://doi.org/10.1007/s11222-005-1310-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-005-1310-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047762707", 
          "https://doi.org/10.1007/s11222-005-1310-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4149(88)90083-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052857560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imammb/15.1.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059687902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto.1997.87.2.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060100950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto.1999.89.7.603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060101412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176325750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177010123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409577"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "Statistical methods are formulated for fitting and testing percolation-based, spatio-temporal models that are generally applicable to biological or physical processes that evolve in spatially distributed populations. The approach is developed and illustrated in the context of the spread of Rhizoctonia solani, a fungal pathogen, in radish but is readily generalized to other scenarios. The particular model considered represents processes of primary and secondary infection between nearest-neighbour hosts in a lattice, and time-varying susceptibility of the hosts. Bayesian methods for fitting the model to observations of disease spread through space and time in replicate populations are developed. These use Markov chain Monte Carlo methods to overcome the problems associated with partial observation of the process. We also consider how model testing can be achieved by embedding classical methods within the Bayesian analysis. In particular we show how a residual process, with known sampling distribution, can be defined. Model fit is then examined by generating samples from the posterior distribution of the residual process, to which a classical test for consistency with the known distribution is applied, enabling the posterior distribution of the P-value of the test used to be estimated. For the Rhizoctonia-radish system the methods confirm the findings of earlier non-spatial analyses regarding the dynamics of disease transmission and yield new evidence of environmental heterogeneity in the replicate experiments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11222-006-0019-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327447", 
        "issn": [
          "0960-3174", 
          "1573-1375"
        ], 
        "name": "Statistics and Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Bayesian estimation for percolation models of disease spread in plant populations", 
    "pagination": "391-402", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bbd570c1148708af029db242dfd9ef972b91ab17ef490f069f0ef56bc1bf954a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11222-006-0019-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039431575"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11222-006-0019-z", 
      "https://app.dimensions.ai/details/publication/pub.1039431575"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113679_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11222-006-0019-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11222-006-0019-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11222-006-0019-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11222-006-0019-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11222-006-0019-z'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11222-006-0019-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N493a9c2a2b1c43bab6e48ac3603ec197
4 schema:citation sg:pub.10.1006/bulm.2001.0234
5 sg:pub.10.1007/s11222-005-1310-0
6 sg:pub.10.1016/j.bulm.2003.09.002
7 https://doi.org/10.1016/0165-0270(86)90041-5
8 https://doi.org/10.1016/0304-4149(88)90083-x
9 https://doi.org/10.1017/cbo9780511525537.008
10 https://doi.org/10.1046/j.1469-8137.2000.00660.x
11 https://doi.org/10.1093/biostatistics/2.1.99
12 https://doi.org/10.1093/imammb/15.1.19
13 https://doi.org/10.1094/phyto.1997.87.2.139
14 https://doi.org/10.1094/phyto.1999.89.7.603
15 https://doi.org/10.1098/rspb.1996.0116
16 https://doi.org/10.1098/rspb.1999.0841
17 https://doi.org/10.1098/rstb.1998.0354
18 https://doi.org/10.1111/1467-985x.00125
19 https://doi.org/10.1111/1467-9876.00061
20 https://doi.org/10.1111/j.1469-8137.2004.01086.x
21 https://doi.org/10.1214/aos/1176325750
22 https://doi.org/10.1214/ss/1177010123
23 https://doi.org/10.1890/02-0564
24 https://doi.org/10.1890/04-1122
25 schema:datePublished 2006-12
26 schema:datePublishedReg 2006-12-01
27 schema:description Statistical methods are formulated for fitting and testing percolation-based, spatio-temporal models that are generally applicable to biological or physical processes that evolve in spatially distributed populations. The approach is developed and illustrated in the context of the spread of Rhizoctonia solani, a fungal pathogen, in radish but is readily generalized to other scenarios. The particular model considered represents processes of primary and secondary infection between nearest-neighbour hosts in a lattice, and time-varying susceptibility of the hosts. Bayesian methods for fitting the model to observations of disease spread through space and time in replicate populations are developed. These use Markov chain Monte Carlo methods to overcome the problems associated with partial observation of the process. We also consider how model testing can be achieved by embedding classical methods within the Bayesian analysis. In particular we show how a residual process, with known sampling distribution, can be defined. Model fit is then examined by generating samples from the posterior distribution of the residual process, to which a classical test for consistency with the known distribution is applied, enabling the posterior distribution of the P-value of the test used to be estimated. For the Rhizoctonia-radish system the methods confirm the findings of earlier non-spatial analyses regarding the dynamics of disease transmission and yield new evidence of environmental heterogeneity in the replicate experiments.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N66a51c66ec7d48d58af72df9c6a2fb37
32 Neec1d7152963483c9b72cb13fcb30d56
33 sg:journal.1327447
34 schema:name Bayesian estimation for percolation models of disease spread in plant populations
35 schema:pagination 391-402
36 schema:productId N699976bc5e7841e3ba0774da606f2be3
37 Nbef4a4a50a5c4bff98abd248af0a267a
38 Nf1c2e54ac5e3416bb63c4e988321b1d4
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039431575
40 https://doi.org/10.1007/s11222-006-0019-z
41 schema:sdDatePublished 2019-04-11T10:39
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N845c2351c22540cb90ca2bca81cac8d6
44 schema:url https://link.springer.com/10.1007%2Fs11222-006-0019-z
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N4106c1a6c18347299a71b2b53aeaae9f rdf:first sg:person.01356417173.74
49 rdf:rest rdf:nil
50 N493a9c2a2b1c43bab6e48ac3603ec197 rdf:first sg:person.01114306473.12
51 rdf:rest N77b20e0bf0624c1aa9b87cc25408a7d8
52 N66a51c66ec7d48d58af72df9c6a2fb37 schema:issueNumber 4
53 rdf:type schema:PublicationIssue
54 N699976bc5e7841e3ba0774da606f2be3 schema:name dimensions_id
55 schema:value pub.1039431575
56 rdf:type schema:PropertyValue
57 N77b20e0bf0624c1aa9b87cc25408a7d8 rdf:first sg:person.01060547000.91
58 rdf:rest Nbc25c4a2c8544fcc9c0da0604822b9e2
59 N845c2351c22540cb90ca2bca81cac8d6 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nbc25c4a2c8544fcc9c0da0604822b9e2 rdf:first sg:person.01230245277.53
62 rdf:rest Nbdb431eb457c4d4ba340babbe312d1cf
63 Nbdb431eb457c4d4ba340babbe312d1cf rdf:first sg:person.01034341733.34
64 rdf:rest Ncf268a6f9c7242918625c2b8a6e39484
65 Nbef4a4a50a5c4bff98abd248af0a267a schema:name readcube_id
66 schema:value bbd570c1148708af029db242dfd9ef972b91ab17ef490f069f0ef56bc1bf954a
67 rdf:type schema:PropertyValue
68 Ncf268a6f9c7242918625c2b8a6e39484 rdf:first sg:person.01255330025.27
69 rdf:rest N4106c1a6c18347299a71b2b53aeaae9f
70 Neec1d7152963483c9b72cb13fcb30d56 schema:volumeNumber 16
71 rdf:type schema:PublicationVolume
72 Nf1c2e54ac5e3416bb63c4e988321b1d4 schema:name doi
73 schema:value 10.1007/s11222-006-0019-z
74 rdf:type schema:PropertyValue
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
79 schema:name Statistics
80 rdf:type schema:DefinedTerm
81 sg:journal.1327447 schema:issn 0960-3174
82 1573-1375
83 schema:name Statistics and Computing
84 rdf:type schema:Periodical
85 sg:person.01034341733.34 schema:affiliation https://www.grid.ac/institutes/grid.450566.4
86 schema:familyName Cook
87 schema:givenName A.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341733.34
89 rdf:type schema:Person
90 sg:person.01060547000.91 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
91 schema:familyName Otten
92 schema:givenName W.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060547000.91
94 rdf:type schema:Person
95 sg:person.01114306473.12 schema:affiliation https://www.grid.ac/institutes/grid.9531.e
96 schema:familyName Gibson
97 schema:givenName G. J.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114306473.12
99 rdf:type schema:Person
100 sg:person.01230245277.53 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
101 schema:familyName N. Filipe
102 schema:givenName J. A.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230245277.53
104 rdf:type schema:Person
105 sg:person.01255330025.27 schema:affiliation https://www.grid.ac/institutes/grid.450566.4
106 schema:familyName Marion
107 schema:givenName G.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255330025.27
109 rdf:type schema:Person
110 sg:person.01356417173.74 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
111 schema:familyName Gilligan
112 schema:givenName C. A.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356417173.74
114 rdf:type schema:Person
115 sg:pub.10.1006/bulm.2001.0234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043013909
116 https://doi.org/10.1006/bulm.2001.0234
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11222-005-1310-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047762707
119 https://doi.org/10.1007/s11222-005-1310-0
120 rdf:type schema:CreativeWork
121 sg:pub.10.1016/j.bulm.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027759050
122 https://doi.org/10.1016/j.bulm.2003.09.002
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0165-0270(86)90041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010934889
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0304-4149(88)90083-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052857560
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/cbo9780511525537.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000865449
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1046/j.1469-8137.2000.00660.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032793503
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/biostatistics/2.1.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038025658
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1093/imammb/15.1.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059687902
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1094/phyto.1997.87.2.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060100950
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1094/phyto.1999.89.7.603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060101412
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1098/rspb.1996.0116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008367876
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1098/rspb.1999.0841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006771472
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1098/rstb.1998.0354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008275802
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/1467-985x.00125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029354261
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/1467-9876.00061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043768453
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1111/j.1469-8137.2004.01086.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041456344
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1214/aos/1176325750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406747
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1214/ss/1177010123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409577
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1890/02-0564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001225260
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1890/04-1122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044356952
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.450566.4 schema:alternateName Biomathematics and Statistics Scotland
161 schema:name Biomathematics & Statistics Scotland, James Clerk Maxwell Building, The King’s Buildings, EH9 3JZ, Edinburgh
162 Department of Actuarial Mathematics & Statistics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, EH14 4AS, Edinburgh
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
165 schema:name Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
168 schema:name Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK
169 Infectious Disease Epidemiology Unit, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.9531.e schema:alternateName Heriot-Watt University
172 schema:name Department of Actuarial Mathematics & Statistics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, EH14 4AS, Edinburgh
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...