Automatically learning usage behavior and generating event sequences for black-box testing of reactive systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-11

AUTHORS

M. Furkan Kıraç, Barış Aktemur, Hasan Sözer, Ceren Şahin Gebizli

ABSTRACT

We propose a novel technique based on recurrent artificial neural networks to generate test cases for black-box testing of reactive systems. We combine functional testing inputs that are automatically generated from a model together with manually-applied test cases for robustness testing. We use this combination to train a long short-term memory (LSTM) network. As a result, the network learns an implicit representation of the usage behavior that is liable to failures. We use this network to generate new event sequences as test cases. We applied our approach in the context of an industrial case study for the black-box testing of a digital TV system. LSTM-generated test cases were able to reveal several faults, including critical ones, that were not detected with existing automated or manual testing activities. Our approach is complementary to model-based and exploratory testing, and the combined approach outperforms random testing in terms of both fault coverage and execution time. More... »

PAGES

1-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11219-018-9439-1

DOI

http://dx.doi.org/10.1007/s11219-018-9439-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111366887


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00d6zye\u011fin University", 
          "id": "https://www.grid.ac/institutes/grid.28009.33", 
          "name": [
            "Ozyegin University, \u0130stanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u0131ra\u00e7", 
        "givenName": "M. Furkan", 
        "id": "sg:person.011701145657.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011701145657.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00d6zye\u011fin University", 
          "id": "https://www.grid.ac/institutes/grid.28009.33", 
          "name": [
            "Ozyegin University, \u0130stanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aktemur", 
        "givenName": "Bar\u0131\u015f", 
        "id": "sg:person.010530574622.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530574622.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00d6zye\u011fin University", 
          "id": "https://www.grid.ac/institutes/grid.28009.33", 
          "name": [
            "Ozyegin University, \u0130stanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00f6zer", 
        "givenName": "Hasan", 
        "id": "sg:person.07771264423.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07771264423.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Vestel Electronics, Manisa, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gebizli", 
        "givenName": "Ceren \u015eahin", 
        "id": "sg:person.014231511625.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231511625.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/stvr.335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002876998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/stvr.335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002876998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35289-8_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005251492", 
          "https://doi.org/10.1007/978-3-642-35289-8_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1012306854", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-29044-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012306854", 
          "https://doi.org/10.1007/978-3-642-29044-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-29044-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012306854", 
          "https://doi.org/10.1007/978-3-642-29044-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1101908.1101947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014281485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/503271.503244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020488427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10515-013-0128-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023930633", 
          "https://doi.org/10.1007/s10515-013-0128-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6423(87)90035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028901262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/226155.226158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029530375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1062455.1062556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032983967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11219-016-9338-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034540057", 
          "https://doi.org/10.1007/s11219-016-9338-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11219-016-9338-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034540057", 
          "https://doi.org/10.1007/s11219-016-9338-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/302405.302640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034798554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-8530-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041825182", 
          "https://doi.org/10.1007/s10851-006-8530-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7908-1844-4_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047336546", 
          "https://doi.org/10.1007/978-3-7908-1844-4_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2642937.2642991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048371160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/32.328991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061153898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/32.988709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061154788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.58337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.963769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ms.2014.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061421589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tce.2010.5439135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061546712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2016.2582924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061719235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tr.2011.2172031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061783588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tse.2005.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061788473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tse.2011.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061788891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tse.2014.2300857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061789066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tse.2014.2372785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061789128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021819400900426x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062959458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jss.2017.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086026481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icst.2013.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093603419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isce.2010.5523721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093795204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iwast.2012.6228988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094343014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2000.861302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094669011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/compsacw.2014.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094707987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/issre.2004.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094767131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/esem.2007.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095187628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/issre.2001.989456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095199686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icce.2012.6161889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095263799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icme.2001.1237792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095384906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icme.2001.1237792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095384906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wcre.2013.6671275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095589953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icstw.2011.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095726142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511814105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098703266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110544"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-11", 
    "datePublishedReg": "2019-01-11", 
    "description": "We propose a novel technique based on recurrent artificial neural networks to generate test cases for black-box testing of reactive systems. We combine functional testing inputs that are automatically generated from a model together with manually-applied test cases for robustness testing. We use this combination to train a long short-term memory (LSTM) network. As a result, the network learns an implicit representation of the usage behavior that is liable to failures. We use this network to generate new event sequences as test cases. We applied our approach in the context of an industrial case study for the black-box testing of a digital TV system. LSTM-generated test cases were able to reveal several faults, including critical ones, that were not detected with existing automated or manual testing activities. Our approach is complementary to model-based and exploratory testing, and the combined approach outperforms random testing in terms of both fault coverage and execution time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11219-018-9439-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136623", 
        "issn": [
          "0963-9314", 
          "1573-1367"
        ], 
        "name": "Software Quality Journal", 
        "type": "Periodical"
      }
    ], 
    "name": "Automatically learning usage behavior and generating event sequences for black-box testing of reactive systems", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8bddf07b3491e6e25e1d352cdd287e81e68410599341265130ff0d28c79633f7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11219-018-9439-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111366887"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11219-018-9439-1", 
      "https://app.dimensions.ai/details/publication/pub.1111366887"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000317_0000000317/records_116903_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11219-018-9439-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11219-018-9439-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11219-018-9439-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11219-018-9439-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11219-018-9439-1'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      68 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11219-018-9439-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4687b485edbf47a68be09ad875f9ad2a
4 schema:citation sg:pub.10.1007/978-3-642-29044-2
5 sg:pub.10.1007/978-3-642-35289-8_25
6 sg:pub.10.1007/978-3-7908-1844-4_10
7 sg:pub.10.1007/s10515-013-0128-9
8 sg:pub.10.1007/s10851-006-8530-6
9 sg:pub.10.1007/s11219-016-9338-2
10 https://app.dimensions.ai/details/publication/pub.1012306854
11 https://doi.org/10.1002/stvr.335
12 https://doi.org/10.1016/0167-6423(87)90035-9
13 https://doi.org/10.1016/j.jss.2017.06.023
14 https://doi.org/10.1017/cbo9780511814105
15 https://doi.org/10.1109/32.328991
16 https://doi.org/10.1109/32.988709
17 https://doi.org/10.1109/5.58337
18 https://doi.org/10.1109/72.963769
19 https://doi.org/10.1109/compsacw.2014.110
20 https://doi.org/10.1109/esem.2007.56
21 https://doi.org/10.1109/icce.2012.6161889
22 https://doi.org/10.1109/icme.2001.1237792
23 https://doi.org/10.1109/icst.2013.62
24 https://doi.org/10.1109/icstw.2011.13
25 https://doi.org/10.1109/ijcnn.2000.861302
26 https://doi.org/10.1109/isce.2010.5523721
27 https://doi.org/10.1109/issre.2001.989456
28 https://doi.org/10.1109/issre.2004.33
29 https://doi.org/10.1109/iwast.2012.6228988
30 https://doi.org/10.1109/ms.2014.55
31 https://doi.org/10.1109/tce.2010.5439135
32 https://doi.org/10.1109/tnnls.2016.2582924
33 https://doi.org/10.1109/tr.2011.2172031
34 https://doi.org/10.1109/tse.2005.36
35 https://doi.org/10.1109/tse.2011.28
36 https://doi.org/10.1109/tse.2014.2300857
37 https://doi.org/10.1109/tse.2014.2372785
38 https://doi.org/10.1109/wcre.2013.6671275
39 https://doi.org/10.1142/s021819400900426x
40 https://doi.org/10.1145/1062455.1062556
41 https://doi.org/10.1145/1101908.1101947
42 https://doi.org/10.1145/226155.226158
43 https://doi.org/10.1145/2642937.2642991
44 https://doi.org/10.1145/302405.302640
45 https://doi.org/10.1145/503271.503244
46 https://doi.org/10.1162/neco.1997.9.8.1735
47 https://doi.org/10.3115/v1/d14-1179
48 schema:datePublished 2019-01-11
49 schema:datePublishedReg 2019-01-11
50 schema:description We propose a novel technique based on recurrent artificial neural networks to generate test cases for black-box testing of reactive systems. We combine functional testing inputs that are automatically generated from a model together with manually-applied test cases for robustness testing. We use this combination to train a long short-term memory (LSTM) network. As a result, the network learns an implicit representation of the usage behavior that is liable to failures. We use this network to generate new event sequences as test cases. We applied our approach in the context of an industrial case study for the black-box testing of a digital TV system. LSTM-generated test cases were able to reveal several faults, including critical ones, that were not detected with existing automated or manual testing activities. Our approach is complementary to model-based and exploratory testing, and the combined approach outperforms random testing in terms of both fault coverage and execution time.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf sg:journal.1136623
55 schema:name Automatically learning usage behavior and generating event sequences for black-box testing of reactive systems
56 schema:pagination 1-23
57 schema:productId N0871ce34ab9a4eea91be4453f05affe4
58 Na331634d5934462eb937cf83789483a9
59 Nedf7c9fbb4d647909ee32b7931889cd1
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111366887
61 https://doi.org/10.1007/s11219-018-9439-1
62 schema:sdDatePublished 2019-04-11T08:39
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N87913678fce54471932e0a3d9f86935d
65 schema:url https://link.springer.com/10.1007%2Fs11219-018-9439-1
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0871ce34ab9a4eea91be4453f05affe4 schema:name readcube_id
70 schema:value 8bddf07b3491e6e25e1d352cdd287e81e68410599341265130ff0d28c79633f7
71 rdf:type schema:PropertyValue
72 N17846a3faf444e0ba32c3d38b147a007 schema:name Vestel Electronics, Manisa, Turkey
73 rdf:type schema:Organization
74 N41602d4a3f414480b4f2a3a1a2020e9e rdf:first sg:person.07771264423.27
75 rdf:rest Nc153052cf1c64fa182fef0751bc99fad
76 N4687b485edbf47a68be09ad875f9ad2a rdf:first sg:person.011701145657.96
77 rdf:rest Nb67406b010d24c8ea675bec956120a6b
78 N87913678fce54471932e0a3d9f86935d schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Na331634d5934462eb937cf83789483a9 schema:name dimensions_id
81 schema:value pub.1111366887
82 rdf:type schema:PropertyValue
83 Nb67406b010d24c8ea675bec956120a6b rdf:first sg:person.010530574622.67
84 rdf:rest N41602d4a3f414480b4f2a3a1a2020e9e
85 Nc153052cf1c64fa182fef0751bc99fad rdf:first sg:person.014231511625.12
86 rdf:rest rdf:nil
87 Nedf7c9fbb4d647909ee32b7931889cd1 schema:name doi
88 schema:value 10.1007/s11219-018-9439-1
89 rdf:type schema:PropertyValue
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:journal.1136623 schema:issn 0963-9314
97 1573-1367
98 schema:name Software Quality Journal
99 rdf:type schema:Periodical
100 sg:person.010530574622.67 schema:affiliation https://www.grid.ac/institutes/grid.28009.33
101 schema:familyName Aktemur
102 schema:givenName Barış
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530574622.67
104 rdf:type schema:Person
105 sg:person.011701145657.96 schema:affiliation https://www.grid.ac/institutes/grid.28009.33
106 schema:familyName Kıraç
107 schema:givenName M. Furkan
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011701145657.96
109 rdf:type schema:Person
110 sg:person.014231511625.12 schema:affiliation N17846a3faf444e0ba32c3d38b147a007
111 schema:familyName Gebizli
112 schema:givenName Ceren Şahin
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231511625.12
114 rdf:type schema:Person
115 sg:person.07771264423.27 schema:affiliation https://www.grid.ac/institutes/grid.28009.33
116 schema:familyName Sözer
117 schema:givenName Hasan
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07771264423.27
119 rdf:type schema:Person
120 sg:pub.10.1007/978-3-642-29044-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012306854
121 https://doi.org/10.1007/978-3-642-29044-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-642-35289-8_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005251492
124 https://doi.org/10.1007/978-3-642-35289-8_25
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-7908-1844-4_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047336546
127 https://doi.org/10.1007/978-3-7908-1844-4_10
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10515-013-0128-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023930633
130 https://doi.org/10.1007/s10515-013-0128-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10851-006-8530-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041825182
133 https://doi.org/10.1007/s10851-006-8530-6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11219-016-9338-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034540057
136 https://doi.org/10.1007/s11219-016-9338-2
137 rdf:type schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1012306854 schema:CreativeWork
139 https://doi.org/10.1002/stvr.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002876998
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0167-6423(87)90035-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028901262
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jss.2017.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086026481
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1017/cbo9780511814105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098703266
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/32.328991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061153898
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/32.988709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061154788
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/5.58337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179726
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/72.963769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219644
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/compsacw.2014.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094707987
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/esem.2007.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095187628
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/icce.2012.6161889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095263799
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/icme.2001.1237792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095384906
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/icst.2013.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093603419
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/icstw.2011.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095726142
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/ijcnn.2000.861302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094669011
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/isce.2010.5523721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093795204
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/issre.2001.989456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095199686
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/issre.2004.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094767131
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/iwast.2012.6228988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094343014
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/ms.2014.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061421589
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tce.2010.5439135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061546712
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tnnls.2016.2582924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061719235
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tr.2011.2172031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061783588
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tse.2005.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061788473
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tse.2011.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061788891
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tse.2014.2300857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061789066
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tse.2014.2372785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061789128
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/wcre.2013.6671275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095589953
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1142/s021819400900426x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062959458
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1145/1062455.1062556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032983967
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1145/1101908.1101947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014281485
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1145/226155.226158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029530375
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1145/2642937.2642991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048371160
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1145/302405.302640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034798554
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1145/503271.503244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020488427
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
210 rdf:type schema:CreativeWork
211 https://doi.org/10.3115/v1/d14-1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110544
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.28009.33 schema:alternateName Özyeğin University
214 schema:name Ozyegin University, İstanbul, Turkey
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...