Long-Term Pulses of Dynamic Coupling Between Solar Hemispheres View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04-12

AUTHORS

D. M. Volobuev, N. G. Makarenko

ABSTRACT

The north–south (N–S) asymmetry of solar activity is a known statistical phenomenon, but its significance is difficult to prove or to explain theoretically. Here we consider each solar hemisphere as a separate dynamical system connected with the other hemisphere via an unknown coupling parameter. We use a nonlinear dynamics approach to calculate the scale-dependent conditional dispersion (CD) of sunspots between hemispheres. Using daily Greenwich sunspot areas, we calculate the Neumann and Pearson chi-squared distances between CDs as indices showing the direction of coupling. We introduce an additional index of synchronization that shows the strength of coupling and allows us to distinguish between complete synchronization and independency of hemispheres. All indices are evaluated in a four-year moving window showing the evolution of coupling between hemispheres. We find that the driver-response interrelation changes between hemispheres have a few pulses during 130 years of Greenwich data with an at least 40-year-long period of unidirectional coupling. These sharp nearly simultaneous pulses of all causality indices are found at the decay of some 11-year cycles. The pulse rate of this new phenomenon of dynamic coupling is irregular: although the first two pulses repeat after the 22-year Hale cycles, the last two pulses repeat after three and four 11-year cycles, respectively. The last pulse occurs at the decay phase of Cycle 23, which means that the next pulse will likely appear during the decay of the future Cycle 25 or later. This new phenomenon of dynamic coupling reveals additional constraints for understanding and modeling the long-term behavior of solar activity cycles. More... »

PAGES

68

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11207-017-1092-5

DOI

http://dx.doi.org/10.1007/s11207-017-1092-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084806316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pulkovo Astronomical Observatory, Russian Academy of Sciences, Pulkovskoe sh. 65, 196140, St. Petersburg, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.437494.9", 
          "name": [
            "Pulkovo Astronomical Observatory, Russian Academy of Sciences, Pulkovskoe sh. 65, 196140, St. Petersburg, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volobuev", 
        "givenName": "D. M.", 
        "id": "sg:person.015466111633.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015466111633.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pulkovo Astronomical Observatory, Russian Academy of Sciences, Pulkovskoe sh. 65, 196140, St. Petersburg, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.437494.9", 
          "name": [
            "Pulkovo Astronomical Observatory, Russian Academy of Sciences, Pulkovskoe sh. 65, 196140, St. Petersburg, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makarenko", 
        "givenName": "N. G.", 
        "id": "sg:person.010414773513.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414773513.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11207-008-9167-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044786366", 
          "https://doi.org/10.1007/s11207-008-9167-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0016793216070173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083763117", 
          "https://doi.org/10.1134/s0016793216070173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01053745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051322243", 
          "https://doi.org/10.1007/bf01053745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-015-0718-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044145519", 
          "https://doi.org/10.1007/s11207-015-0718-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1017515709106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051185343", 
          "https://doi.org/10.1023/a:1017515709106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047554971", 
          "https://doi.org/10.1038/srep07464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0016793215070166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001913509", 
          "https://doi.org/10.1134/s0016793215070166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028273521", 
          "https://doi.org/10.1038/nclimate2568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-006-0154-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010596113", 
          "https://doi.org/10.1007/s11207-006-0154-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053039369", 
          "https://doi.org/10.1038/ncomms7491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-006-0201-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041217329", 
          "https://doi.org/10.1007/s11207-006-0201-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-12", 
    "datePublishedReg": "2017-04-12", 
    "description": "The north\u2013south (N\u2013S) asymmetry of solar activity is a known statistical phenomenon, but its significance is difficult to prove or to explain theoretically. Here we consider each solar hemisphere as a separate dynamical system connected with the other hemisphere via an unknown coupling parameter. We use a nonlinear dynamics approach to calculate the scale-dependent conditional dispersion (CD) of sunspots between hemispheres. Using daily Greenwich sunspot areas, we calculate the Neumann and Pearson chi-squared distances between CDs as indices showing the direction of coupling. We introduce an additional index of synchronization that shows the strength of coupling and allows us to distinguish between complete synchronization and independency of hemispheres. All indices are evaluated in a four-year moving window showing the evolution of coupling between hemispheres. We find that the driver-response interrelation changes between hemispheres have a few pulses during 130 years of Greenwich data with an at least 40-year-long period of unidirectional coupling. These sharp nearly simultaneous pulses of all causality indices are found at the decay of some 11-year cycles. The pulse rate of this new phenomenon of dynamic coupling is irregular: although the first two pulses repeat after the 22-year Hale cycles, the last two pulses repeat after three and four 11-year cycles, respectively. The last pulse occurs at the decay phase of Cycle 23, which means that the next pulse will likely appear during the decay of the future Cycle 25 or later. This new phenomenon of dynamic coupling reveals additional constraints for understanding and modeling the long-term behavior of solar activity cycles.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11207-017-1092-5", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6751764", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051932", 
        "issn": [
          "0038-0938", 
          "1573-093X"
        ], 
        "name": "Solar Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "292"
      }
    ], 
    "keywords": [
      "solar hemisphere", 
      "solar activity cycle", 
      "north-south asymmetry", 
      "new phenomenon", 
      "solar activity", 
      "evolution of coupling", 
      "cycle 23", 
      "pulses", 
      "activity cycle", 
      "separate dynamical system", 
      "coupling parameter", 
      "long-term pulses", 
      "next pulse", 
      "cycle 25", 
      "conditional dispersion", 
      "decay phase", 
      "simultaneous pulses", 
      "Hale cycle", 
      "unidirectional coupling", 
      "coupling", 
      "dynamic coupling", 
      "strength of coupling", 
      "sunspot areas", 
      "last pulse", 
      "decay", 
      "nonlinear dynamics", 
      "direction of coupling", 
      "sunspots", 
      "phenomenon", 
      "dispersion", 
      "statistical phenomenon", 
      "additional constraints", 
      "asymmetry", 
      "dynamics", 
      "distance", 
      "Greenwich data", 
      "window", 
      "dynamical systems", 
      "hemisphere", 
      "phase", 
      "evolution", 
      "direction", 
      "complete synchronization", 
      "chi-squared distance", 
      "parameters", 
      "index", 
      "long-term behavior", 
      "Neumann", 
      "causality index", 
      "synchronization", 
      "strength", 
      "system", 
      "constraints", 
      "behavior", 
      "pulse rate", 
      "data", 
      "understanding", 
      "rate", 
      "cycle", 
      "changes", 
      "independency", 
      "additional indices", 
      "area", 
      "period", 
      "significance", 
      "years", 
      "activity", 
      "four years"
    ], 
    "name": "Long-Term Pulses of Dynamic Coupling Between Solar Hemispheres", 
    "pagination": "68", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084806316"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11207-017-1092-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11207-017-1092-5", 
      "https://app.dimensions.ai/details/publication/pub.1084806316"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_745.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11207-017-1092-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11207-017-1092-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11207-017-1092-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11207-017-1092-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11207-017-1092-5'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      103 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11207-017-1092-5 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author Nb29e38d9e72e4ac587d3a18e7ac241dd
4 schema:citation sg:pub.10.1007/bf01053745
5 sg:pub.10.1007/s11207-006-0154-x
6 sg:pub.10.1007/s11207-006-0201-6
7 sg:pub.10.1007/s11207-008-9167-y
8 sg:pub.10.1007/s11207-015-0718-8
9 sg:pub.10.1023/a:1017515709106
10 sg:pub.10.1038/nclimate2568
11 sg:pub.10.1038/ncomms7491
12 sg:pub.10.1038/srep07464
13 sg:pub.10.1134/s0016793215070166
14 sg:pub.10.1134/s0016793216070173
15 schema:datePublished 2017-04-12
16 schema:datePublishedReg 2017-04-12
17 schema:description The north–south (N–S) asymmetry of solar activity is a known statistical phenomenon, but its significance is difficult to prove or to explain theoretically. Here we consider each solar hemisphere as a separate dynamical system connected with the other hemisphere via an unknown coupling parameter. We use a nonlinear dynamics approach to calculate the scale-dependent conditional dispersion (CD) of sunspots between hemispheres. Using daily Greenwich sunspot areas, we calculate the Neumann and Pearson chi-squared distances between CDs as indices showing the direction of coupling. We introduce an additional index of synchronization that shows the strength of coupling and allows us to distinguish between complete synchronization and independency of hemispheres. All indices are evaluated in a four-year moving window showing the evolution of coupling between hemispheres. We find that the driver-response interrelation changes between hemispheres have a few pulses during 130 years of Greenwich data with an at least 40-year-long period of unidirectional coupling. These sharp nearly simultaneous pulses of all causality indices are found at the decay of some 11-year cycles. The pulse rate of this new phenomenon of dynamic coupling is irregular: although the first two pulses repeat after the 22-year Hale cycles, the last two pulses repeat after three and four 11-year cycles, respectively. The last pulse occurs at the decay phase of Cycle 23, which means that the next pulse will likely appear during the decay of the future Cycle 25 or later. This new phenomenon of dynamic coupling reveals additional constraints for understanding and modeling the long-term behavior of solar activity cycles.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf Nafd0ed8a7d31402685fb6713d89679a1
21 Ne2df4adefaad46d1909f5240822d0159
22 sg:journal.1051932
23 schema:keywords Greenwich data
24 Hale cycle
25 Neumann
26 activity
27 activity cycle
28 additional constraints
29 additional indices
30 area
31 asymmetry
32 behavior
33 causality index
34 changes
35 chi-squared distance
36 complete synchronization
37 conditional dispersion
38 constraints
39 coupling
40 coupling parameter
41 cycle
42 cycle 23
43 cycle 25
44 data
45 decay
46 decay phase
47 direction
48 direction of coupling
49 dispersion
50 distance
51 dynamic coupling
52 dynamical systems
53 dynamics
54 evolution
55 evolution of coupling
56 four years
57 hemisphere
58 independency
59 index
60 last pulse
61 long-term behavior
62 long-term pulses
63 new phenomenon
64 next pulse
65 nonlinear dynamics
66 north-south asymmetry
67 parameters
68 period
69 phase
70 phenomenon
71 pulse rate
72 pulses
73 rate
74 separate dynamical system
75 significance
76 simultaneous pulses
77 solar activity
78 solar activity cycle
79 solar hemisphere
80 statistical phenomenon
81 strength
82 strength of coupling
83 sunspot areas
84 sunspots
85 synchronization
86 system
87 understanding
88 unidirectional coupling
89 window
90 years
91 schema:name Long-Term Pulses of Dynamic Coupling Between Solar Hemispheres
92 schema:pagination 68
93 schema:productId N9a45a3cc45224ba89417b6ee63a40395
94 Nd68e56849bb54a2390c0eb9da2bc3ef8
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084806316
96 https://doi.org/10.1007/s11207-017-1092-5
97 schema:sdDatePublished 2022-12-01T06:36
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N561f723fccf84e1d82c05e12ce67000d
100 schema:url https://doi.org/10.1007/s11207-017-1092-5
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N561f723fccf84e1d82c05e12ce67000d schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N8de54393b0d84f23957d08e46eb718a0 rdf:first sg:person.010414773513.37
107 rdf:rest rdf:nil
108 N9a45a3cc45224ba89417b6ee63a40395 schema:name dimensions_id
109 schema:value pub.1084806316
110 rdf:type schema:PropertyValue
111 Nafd0ed8a7d31402685fb6713d89679a1 schema:issueNumber 4
112 rdf:type schema:PublicationIssue
113 Nb29e38d9e72e4ac587d3a18e7ac241dd rdf:first sg:person.015466111633.44
114 rdf:rest N8de54393b0d84f23957d08e46eb718a0
115 Nd68e56849bb54a2390c0eb9da2bc3ef8 schema:name doi
116 schema:value 10.1007/s11207-017-1092-5
117 rdf:type schema:PropertyValue
118 Ne2df4adefaad46d1909f5240822d0159 schema:volumeNumber 292
119 rdf:type schema:PublicationVolume
120 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
124 schema:name Astronomical and Space Sciences
125 rdf:type schema:DefinedTerm
126 sg:grant.6751764 http://pending.schema.org/fundedItem sg:pub.10.1007/s11207-017-1092-5
127 rdf:type schema:MonetaryGrant
128 sg:journal.1051932 schema:issn 0038-0938
129 1573-093X
130 schema:name Solar Physics
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.010414773513.37 schema:affiliation grid-institutes:grid.437494.9
134 schema:familyName Makarenko
135 schema:givenName N. G.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414773513.37
137 rdf:type schema:Person
138 sg:person.015466111633.44 schema:affiliation grid-institutes:grid.437494.9
139 schema:familyName Volobuev
140 schema:givenName D. M.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015466111633.44
142 rdf:type schema:Person
143 sg:pub.10.1007/bf01053745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051322243
144 https://doi.org/10.1007/bf01053745
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11207-006-0154-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010596113
147 https://doi.org/10.1007/s11207-006-0154-x
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11207-006-0201-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041217329
150 https://doi.org/10.1007/s11207-006-0201-6
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11207-008-9167-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044786366
153 https://doi.org/10.1007/s11207-008-9167-y
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11207-015-0718-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044145519
156 https://doi.org/10.1007/s11207-015-0718-8
157 rdf:type schema:CreativeWork
158 sg:pub.10.1023/a:1017515709106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051185343
159 https://doi.org/10.1023/a:1017515709106
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nclimate2568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028273521
162 https://doi.org/10.1038/nclimate2568
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ncomms7491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053039369
165 https://doi.org/10.1038/ncomms7491
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/srep07464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047554971
168 https://doi.org/10.1038/srep07464
169 rdf:type schema:CreativeWork
170 sg:pub.10.1134/s0016793215070166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001913509
171 https://doi.org/10.1134/s0016793215070166
172 rdf:type schema:CreativeWork
173 sg:pub.10.1134/s0016793216070173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083763117
174 https://doi.org/10.1134/s0016793216070173
175 rdf:type schema:CreativeWork
176 grid-institutes:grid.437494.9 schema:alternateName Pulkovo Astronomical Observatory, Russian Academy of Sciences, Pulkovskoe sh. 65, 196140, St. Petersburg, Russian Federation
177 schema:name Pulkovo Astronomical Observatory, Russian Academy of Sciences, Pulkovskoe sh. 65, 196140, St. Petersburg, Russian Federation
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...