The Effect of Limited Sample Sizes on the Accuracy of the Estimated Scaling Parameter for Power-Law-Distributed Solar Data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05

AUTHORS

Elke D’Huys, David Berghmans, Daniel B. Seaton, Stefaan Poedts

ABSTRACT

Many natural processes exhibit a power-law behavior. The power-law exponent is linked to the underlying physical process, and therefore its precise value is of interest. With respect to the energy content of nanoflares, for example, a power-law exponent steeper than 2 is believed to be a necessary condition for solving the enigmatic coronal heating problem. Studying power-law distributions over several orders of magnitudes requires sufficient data and appropriate methodology. In this article we demonstrate the shortcomings of some popular methods in solar physics that are applied to data of typical sample sizes. We use synthetic data to study the effect of the sample size on the performance of different estimation methods. We show that vast amounts of data are needed to obtain a reliable result with graphical methods (where the power-law exponent is estimated by a linear fit on a log-transformed histogram of the data). We revisit published results on power laws for the angular width of solar coronal mass ejections and the radiative losses of nanoflares. We demonstrate the benefits of the maximum likelihood estimator and advocate its use. More... »

PAGES

1561-1576

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11207-016-0910-5

DOI

http://dx.doi.org/10.1007/s11207-016-0910-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011325195


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law and Legal Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium", 
            "Centre for mathematical Plasma-Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200b \u2013 bus 2400, 3001, Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Huys", 
        "givenName": "Elke", 
        "id": "sg:person.012116634461.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116634461.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Observatory of Belgium", 
          "id": "https://www.grid.ac/institutes/grid.425636.0", 
          "name": [
            "Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berghmans", 
        "givenName": "David", 
        "id": "sg:person.011577310317.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577310317.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Centers for Environmental Information", 
          "id": "https://www.grid.ac/institutes/grid.454206.1", 
          "name": [
            "Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium", 
            "Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA", 
            "NOAA National Centers for Environmental Information, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seaton", 
        "givenName": "Daniel B.", 
        "id": "sg:person.015355666077.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015355666077.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Centre for mathematical Plasma-Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200b \u2013 bus 2400, 3001, Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poedts", 
        "givenName": "Stefaan", 
        "id": "sg:person.0636673172.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636673172.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1890/07-1288.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007576492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2004-00316-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007936830", 
          "https://doi.org/10.1140/epjb/e2004-00316-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00107510500052444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008031163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0008068319570303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010686615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0008068319570303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010686615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00149894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012038955", 
          "https://doi.org/10.1007/bf00149894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00149894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012038955", 
          "https://doi.org/10.1007/bf00149894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11214-014-0054-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015954200", 
          "https://doi.org/10.1007/s11214-014-0054-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11214-014-0054-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015954200", 
          "https://doi.org/10.1007/s11214-014-0054-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00733432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019034734", 
          "https://doi.org/10.1007/bf00733432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00733432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019034734", 
          "https://doi.org/10.1007/bf00733432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/508876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030327736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038428025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038428025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/795/1/49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043331749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361/201628130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056925032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/186180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058515689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/421261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058712009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/691/2/1222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058942165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070710111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851851"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "Many natural processes exhibit a power-law behavior. The power-law exponent is linked to the underlying physical process, and therefore its precise value is of interest. With respect to the energy content of nanoflares, for example, a power-law exponent steeper than 2 is believed to be a necessary condition for solving the enigmatic coronal heating problem. Studying power-law distributions over several orders of magnitudes requires sufficient data and appropriate methodology. In this article we demonstrate the shortcomings of some popular methods in solar physics that are applied to data of typical sample sizes. We use synthetic data to study the effect of the sample size on the performance of different estimation methods. We show that vast amounts of data are needed to obtain a reliable result with graphical methods (where the power-law exponent is estimated by a linear fit on a log-transformed histogram of the data). We revisit published results on power laws for the angular width of solar coronal mass ejections and the radiative losses of nanoflares. We demonstrate the benefits of the maximum likelihood estimator and advocate its use.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11207-016-0910-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3783771", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051932", 
        "issn": [
          "0038-0938", 
          "1573-093X"
        ], 
        "name": "Solar Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "291"
      }
    ], 
    "name": "The Effect of Limited Sample Sizes on the Accuracy of the Estimated Scaling Parameter for Power-Law-Distributed Solar Data", 
    "pagination": "1561-1576", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "35f5194606ff7d9c495022740280aa7aa86364b1af2e2d7018fd01b3efe2c441"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11207-016-0910-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011325195"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11207-016-0910-5", 
      "https://app.dimensions.ai/details/publication/pub.1011325195"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87088_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11207-016-0910-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11207-016-0910-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11207-016-0910-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11207-016-0910-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11207-016-0910-5'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11207-016-0910-5 schema:about anzsrc-for:18
2 anzsrc-for:1801
3 schema:author Nee56699de11649b797777f2a4dacba3a
4 schema:citation sg:pub.10.1007/bf00149894
5 sg:pub.10.1007/bf00733432
6 sg:pub.10.1007/s11214-014-0054-6
7 sg:pub.10.1140/epjb/e2004-00316-5
8 https://doi.org/10.1051/0004-6361/201628130
9 https://doi.org/10.1080/00107510500052444
10 https://doi.org/10.1086/186180
11 https://doi.org/10.1086/421261
12 https://doi.org/10.1086/508876
13 https://doi.org/10.1088/0004-637x/691/2/1222
14 https://doi.org/10.1088/0004-637x/795/1/49
15 https://doi.org/10.1103/physrevlett.59.381
16 https://doi.org/10.1103/physrevlett.83.4662
17 https://doi.org/10.1137/070710111
18 https://doi.org/10.1177/0008068319570303
19 https://doi.org/10.1890/07-1288.1
20 schema:datePublished 2016-05
21 schema:datePublishedReg 2016-05-01
22 schema:description Many natural processes exhibit a power-law behavior. The power-law exponent is linked to the underlying physical process, and therefore its precise value is of interest. With respect to the energy content of nanoflares, for example, a power-law exponent steeper than 2 is believed to be a necessary condition for solving the enigmatic coronal heating problem. Studying power-law distributions over several orders of magnitudes requires sufficient data and appropriate methodology. In this article we demonstrate the shortcomings of some popular methods in solar physics that are applied to data of typical sample sizes. We use synthetic data to study the effect of the sample size on the performance of different estimation methods. We show that vast amounts of data are needed to obtain a reliable result with graphical methods (where the power-law exponent is estimated by a linear fit on a log-transformed histogram of the data). We revisit published results on power laws for the angular width of solar coronal mass ejections and the radiative losses of nanoflares. We demonstrate the benefits of the maximum likelihood estimator and advocate its use.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N0e0e413b33c74d10bd2f0a7b6bf6a383
27 N2f2aa16bbed643df9fb6ac68c2daed93
28 sg:journal.1051932
29 schema:name The Effect of Limited Sample Sizes on the Accuracy of the Estimated Scaling Parameter for Power-Law-Distributed Solar Data
30 schema:pagination 1561-1576
31 schema:productId N075515186f194cac9797b2fc91476f9b
32 N6a6df97b17fa45e6ac7c25e990c1790d
33 Nb7a631e6f29e4f108a2730cfe021e7fb
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011325195
35 https://doi.org/10.1007/s11207-016-0910-5
36 schema:sdDatePublished 2019-04-11T12:22
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nadfcc05092a44feabf1ca7a260892b8c
39 schema:url https://link.springer.com/10.1007%2Fs11207-016-0910-5
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N075515186f194cac9797b2fc91476f9b schema:name readcube_id
44 schema:value 35f5194606ff7d9c495022740280aa7aa86364b1af2e2d7018fd01b3efe2c441
45 rdf:type schema:PropertyValue
46 N0e0e413b33c74d10bd2f0a7b6bf6a383 schema:issueNumber 5
47 rdf:type schema:PublicationIssue
48 N2f2aa16bbed643df9fb6ac68c2daed93 schema:volumeNumber 291
49 rdf:type schema:PublicationVolume
50 N3320048261b84b8e9a1e9cd3314cd327 rdf:first sg:person.0636673172.71
51 rdf:rest rdf:nil
52 N6a6df97b17fa45e6ac7c25e990c1790d schema:name dimensions_id
53 schema:value pub.1011325195
54 rdf:type schema:PropertyValue
55 N6a8624d6d61f44c08e0304445510a730 rdf:first sg:person.011577310317.46
56 rdf:rest Nd56ae7d8bc994168b1dafcc0da95327e
57 Nadfcc05092a44feabf1ca7a260892b8c schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nb7a631e6f29e4f108a2730cfe021e7fb schema:name doi
60 schema:value 10.1007/s11207-016-0910-5
61 rdf:type schema:PropertyValue
62 Nd56ae7d8bc994168b1dafcc0da95327e rdf:first sg:person.015355666077.52
63 rdf:rest N3320048261b84b8e9a1e9cd3314cd327
64 Nee56699de11649b797777f2a4dacba3a rdf:first sg:person.012116634461.01
65 rdf:rest N6a8624d6d61f44c08e0304445510a730
66 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
67 schema:name Law and Legal Studies
68 rdf:type schema:DefinedTerm
69 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Law
71 rdf:type schema:DefinedTerm
72 sg:grant.3783771 http://pending.schema.org/fundedItem sg:pub.10.1007/s11207-016-0910-5
73 rdf:type schema:MonetaryGrant
74 sg:journal.1051932 schema:issn 0038-0938
75 1573-093X
76 schema:name Solar Physics
77 rdf:type schema:Periodical
78 sg:person.011577310317.46 schema:affiliation https://www.grid.ac/institutes/grid.425636.0
79 schema:familyName Berghmans
80 schema:givenName David
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577310317.46
82 rdf:type schema:Person
83 sg:person.012116634461.01 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
84 schema:familyName D’Huys
85 schema:givenName Elke
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116634461.01
87 rdf:type schema:Person
88 sg:person.015355666077.52 schema:affiliation https://www.grid.ac/institutes/grid.454206.1
89 schema:familyName Seaton
90 schema:givenName Daniel B.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015355666077.52
92 rdf:type schema:Person
93 sg:person.0636673172.71 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
94 schema:familyName Poedts
95 schema:givenName Stefaan
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636673172.71
97 rdf:type schema:Person
98 sg:pub.10.1007/bf00149894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012038955
99 https://doi.org/10.1007/bf00149894
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf00733432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019034734
102 https://doi.org/10.1007/bf00733432
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11214-014-0054-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015954200
105 https://doi.org/10.1007/s11214-014-0054-6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1140/epjb/e2004-00316-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007936830
108 https://doi.org/10.1140/epjb/e2004-00316-5
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1051/0004-6361/201628130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056925032
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1080/00107510500052444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008031163
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1086/186180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058515689
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1086/421261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058712009
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1086/508876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030327736
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0004-637x/691/2/1222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058942165
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0004-637x/795/1/49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043331749
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.59.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796158
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.83.4662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038428025
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1137/070710111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851851
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1177/0008068319570303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010686615
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1890/07-1288.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007576492
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.425636.0 schema:alternateName Royal Observatory of Belgium
135 schema:name Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.454206.1 schema:alternateName National Centers for Environmental Information
138 schema:name Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
139 NOAA National Centers for Environmental Information, Boulder, CO, USA
140 Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
143 schema:name Centre for mathematical Plasma-Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200b – bus 2400, 3001, Leuven, Belgium
144 Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...