Acoustic-Power Maps of Solar Active Regions with Direction Filters and Phase-Velocity Filters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03

AUTHORS

Dean-Yi Chou, Zhi-Chao Liang, Ming-Hsu Yang, Ming-Tsung Sun

ABSTRACT

We study the properties of power maps of solar acoustic waves filtered with direction filters and phase-velocity filters. A direction filter is used to isolate acoustic waves propagating in a narrow range of directions. The acoustic-power map of the waves filtered with a direction filter shows extended reduced-power features behind magnetic regions with respect to the wave direction. A phase-velocity filter is further applied to isolate waves with similar wave paths. In the power maps of the waves filtered with both a direction filter and a phase-velocity filter, a reduced-power image of a sunspot appears behind the sunspot with respect to the wave direction. The distance between the sunspot and the secondary image is consistent with the one-skip travel distance of the wave packet associated with the phase-velocity filter. The waves filtered with direction and phase-velocity filters at the location of the secondary image could be used to probe the sunspot. In the quiet Sun, spatial fluctuations exist in any acoustic-power map. These fluctuations are mainly caused by interference among modes with the same frequency. The fluctuations are random with two properties: They change rapidly with time, and their magnitude decreases with the square root of the number of frames used in computing the acoustic-power map. More... »

PAGES

39-51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11207-008-9315-4

DOI

http://dx.doi.org/10.1007/s11207-008-9315-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042174504


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Physics, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chou", 
        "givenName": "Dean-Yi", 
        "id": "sg:person.07546665213.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546665213.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Physics, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Zhi-Chao", 
        "id": "sg:person.014664705570.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664705570.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Physics, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Ming-Hsu", 
        "id": "sg:person.013332147613.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013332147613.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Department of Mechanical Engineering, Chang-Gung University, 33333, Kwei-San, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Ming-Tsung", 
        "id": "sg:person.016034132166.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034132166.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/revmodphys.74.1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003543829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003543829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1484142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004272374", 
          "https://doi.org/10.1134/1.1484142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-005-8188-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007080201", 
          "https://doi.org/10.1007/s11207-005-8188-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-005-8188-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007080201", 
          "https://doi.org/10.1007/s11207-005-8188-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00733429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014416570", 
          "https://doi.org/10.1007/bf00733429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00733429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014416570", 
          "https://doi.org/10.1007/bf00733429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00149991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021729624", 
          "https://doi.org/10.1007/bf00149991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00149991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021729624", 
          "https://doi.org/10.1007/bf00149991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/511266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034317840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/505930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038179407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/342272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043255861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/504705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045734821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-008-9148-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049420900", 
          "https://doi.org/10.1007/s11207-008-9148-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/159642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058490932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/166987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058498277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/171477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058502767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/172172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058503462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/176272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058507561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/303615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058611140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/303680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058611205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/306128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058613650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/306960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058614482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/311340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058618819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/521602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058793212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/588208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058800679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/690/1/l23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058942110"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03", 
    "datePublishedReg": "2009-03-01", 
    "description": "We study the properties of power maps of solar acoustic waves filtered with direction filters and phase-velocity filters. A direction filter is used to isolate acoustic waves propagating in a narrow range of directions. The acoustic-power map of the waves filtered with a direction filter shows extended reduced-power features behind magnetic regions with respect to the wave direction. A phase-velocity filter is further applied to isolate waves with similar wave paths. In the power maps of the waves filtered with both a direction filter and a phase-velocity filter, a reduced-power image of a sunspot appears behind the sunspot with respect to the wave direction. The distance between the sunspot and the secondary image is consistent with the one-skip travel distance of the wave packet associated with the phase-velocity filter. The waves filtered with direction and phase-velocity filters at the location of the secondary image could be used to probe the sunspot. In the quiet Sun, spatial fluctuations exist in any acoustic-power map. These fluctuations are mainly caused by interference among modes with the same frequency. The fluctuations are random with two properties: They change rapidly with time, and their magnitude decreases with the square root of the number of frames used in computing the acoustic-power map.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11207-008-9315-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051932", 
        "issn": [
          "0038-0938", 
          "1573-093X"
        ], 
        "name": "Solar Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "255"
      }
    ], 
    "name": "Acoustic-Power Maps of Solar Active Regions with Direction Filters and Phase-Velocity Filters", 
    "pagination": "39-51", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c8e61a47797838ce9aea4454aff2159cff237f6ed74ca17090b0a1cacffc272c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11207-008-9315-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042174504"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11207-008-9315-4", 
      "https://app.dimensions.ai/details/publication/pub.1042174504"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11207-008-9315-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11207-008-9315-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11207-008-9315-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11207-008-9315-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11207-008-9315-4'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11207-008-9315-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8e581c4a68434064969e82b3bb2285bd
4 schema:citation sg:pub.10.1007/bf00149991
5 sg:pub.10.1007/bf00733429
6 sg:pub.10.1007/s11207-005-8188-z
7 sg:pub.10.1007/s11207-008-9148-1
8 sg:pub.10.1134/1.1484142
9 https://doi.org/10.1086/159642
10 https://doi.org/10.1086/166987
11 https://doi.org/10.1086/171477
12 https://doi.org/10.1086/172172
13 https://doi.org/10.1086/176272
14 https://doi.org/10.1086/303615
15 https://doi.org/10.1086/303680
16 https://doi.org/10.1086/306128
17 https://doi.org/10.1086/306960
18 https://doi.org/10.1086/311340
19 https://doi.org/10.1086/342272
20 https://doi.org/10.1086/504705
21 https://doi.org/10.1086/505930
22 https://doi.org/10.1086/511266
23 https://doi.org/10.1086/521602
24 https://doi.org/10.1086/588208
25 https://doi.org/10.1088/0004-637x/690/1/l23
26 https://doi.org/10.1103/revmodphys.74.1073
27 schema:datePublished 2009-03
28 schema:datePublishedReg 2009-03-01
29 schema:description We study the properties of power maps of solar acoustic waves filtered with direction filters and phase-velocity filters. A direction filter is used to isolate acoustic waves propagating in a narrow range of directions. The acoustic-power map of the waves filtered with a direction filter shows extended reduced-power features behind magnetic regions with respect to the wave direction. A phase-velocity filter is further applied to isolate waves with similar wave paths. In the power maps of the waves filtered with both a direction filter and a phase-velocity filter, a reduced-power image of a sunspot appears behind the sunspot with respect to the wave direction. The distance between the sunspot and the secondary image is consistent with the one-skip travel distance of the wave packet associated with the phase-velocity filter. The waves filtered with direction and phase-velocity filters at the location of the secondary image could be used to probe the sunspot. In the quiet Sun, spatial fluctuations exist in any acoustic-power map. These fluctuations are mainly caused by interference among modes with the same frequency. The fluctuations are random with two properties: They change rapidly with time, and their magnitude decreases with the square root of the number of frames used in computing the acoustic-power map.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N3ce8914ecb774dd980c3d2789166af3f
34 Nb6506d85527b4fefa7ca904ba3b32b2e
35 sg:journal.1051932
36 schema:name Acoustic-Power Maps of Solar Active Regions with Direction Filters and Phase-Velocity Filters
37 schema:pagination 39-51
38 schema:productId N3872846b069043768a333aa2e0ab3450
39 Nbb48ce78b84941019bed7c35983aa03d
40 Nd41941998fe7414fa4ac702041339734
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042174504
42 https://doi.org/10.1007/s11207-008-9315-4
43 schema:sdDatePublished 2019-04-10T22:35
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N9531d2b0e30541ba86f2e3428d2cd628
46 schema:url http://link.springer.com/10.1007%2Fs11207-008-9315-4
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N03ca2a35e4fe43a889c990197a0c21a6 rdf:first sg:person.013332147613.32
51 rdf:rest Ncc729a0b3923455eb17fe16978fd3840
52 N350ff357470b49839f614d379243173e rdf:first sg:person.014664705570.12
53 rdf:rest N03ca2a35e4fe43a889c990197a0c21a6
54 N3872846b069043768a333aa2e0ab3450 schema:name dimensions_id
55 schema:value pub.1042174504
56 rdf:type schema:PropertyValue
57 N3ce8914ecb774dd980c3d2789166af3f schema:volumeNumber 255
58 rdf:type schema:PublicationVolume
59 N8e581c4a68434064969e82b3bb2285bd rdf:first sg:person.07546665213.30
60 rdf:rest N350ff357470b49839f614d379243173e
61 N9531d2b0e30541ba86f2e3428d2cd628 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nb6506d85527b4fefa7ca904ba3b32b2e schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 Nbb48ce78b84941019bed7c35983aa03d schema:name doi
66 schema:value 10.1007/s11207-008-9315-4
67 rdf:type schema:PropertyValue
68 Ncc729a0b3923455eb17fe16978fd3840 rdf:first sg:person.016034132166.36
69 rdf:rest rdf:nil
70 Nd41941998fe7414fa4ac702041339734 schema:name readcube_id
71 schema:value c8e61a47797838ce9aea4454aff2159cff237f6ed74ca17090b0a1cacffc272c
72 rdf:type schema:PropertyValue
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
77 schema:name Artificial Intelligence and Image Processing
78 rdf:type schema:DefinedTerm
79 sg:journal.1051932 schema:issn 0038-0938
80 1573-093X
81 schema:name Solar Physics
82 rdf:type schema:Periodical
83 sg:person.013332147613.32 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
84 schema:familyName Yang
85 schema:givenName Ming-Hsu
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013332147613.32
87 rdf:type schema:Person
88 sg:person.014664705570.12 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
89 schema:familyName Liang
90 schema:givenName Zhi-Chao
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014664705570.12
92 rdf:type schema:Person
93 sg:person.016034132166.36 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
94 schema:familyName Sun
95 schema:givenName Ming-Tsung
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034132166.36
97 rdf:type schema:Person
98 sg:person.07546665213.30 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
99 schema:familyName Chou
100 schema:givenName Dean-Yi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546665213.30
102 rdf:type schema:Person
103 sg:pub.10.1007/bf00149991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021729624
104 https://doi.org/10.1007/bf00149991
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf00733429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014416570
107 https://doi.org/10.1007/bf00733429
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11207-005-8188-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007080201
110 https://doi.org/10.1007/s11207-005-8188-z
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11207-008-9148-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049420900
113 https://doi.org/10.1007/s11207-008-9148-1
114 rdf:type schema:CreativeWork
115 sg:pub.10.1134/1.1484142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004272374
116 https://doi.org/10.1134/1.1484142
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1086/159642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058490932
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1086/166987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058498277
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1086/171477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058502767
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1086/172172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058503462
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1086/176272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058507561
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1086/303615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058611140
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1086/303680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058611205
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1086/306128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058613650
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1086/306960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058614482
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1086/311340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058618819
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1086/342272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043255861
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1086/504705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045734821
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1086/505930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038179407
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1086/511266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034317840
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1086/521602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058793212
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1086/588208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058800679
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1088/0004-637x/690/1/l23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058942110
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/revmodphys.74.1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003543829
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.145695.a schema:alternateName Chang Gung University
155 schema:name Department of Mechanical Engineering, Chang-Gung University, 33333, Kwei-San, Taiwan, ROC
156 rdf:type schema:Organization
157 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
158 schema:name Department of Physics, National Tsing Hua University, 30013, Hsinchu, Taiwan, ROC
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...