Comparison of Five Numerical Codes for Automated Tracing of Coronal Loops View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-04

AUTHORS

Markus J. Aschwanden, Jong Kwan Lee, G. Allen Gary, Michael Smith, Bernd Inhester

ABSTRACT

The three-dimensional (3D) modeling of coronal loops and filaments requires algorithms that automatically trace curvilinear features in solar EUV or soft X-ray images. We compare five existing algorithms that have been developed and customized to trace curvilinear features in solar images: i) the oriented-connectivity method (OCM), which is an extension of the Strous pixel-labeling algorithm (developed by Lee, Newman, and Gary); ii) the dynamic aperture-based loop-segmentation method (developed by Lee, Newman, and Gary); iii) unbiased detection of curvilinear structures (developed by Steger, Raghupathy, and Smith); iv) the oriented-direction method (developed by Aschwanden); and v) ridge detection by automated scaling (developed by Inhester). We test the five existing numerical codes with a TRACE image that shows a bipolar active region and contains over 100 discernable loops. We evaluate the performance of the five codes by comparing the cumulative distribution of loop lengths, the median and maximum loop length, the completeness or detection efficiency, the accuracy, and flux sensitivity. These algorithms are useful for the reconstruction of the 3D geometry of coronal loops from stereoscopic observations with the STEREO spacecraft, or for quantitative comparisons of observed EUV loop geometries with (nonlinear force-free) magnetic field extrapolation models. More... »

PAGES

359-377

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11207-007-9064-9

DOI

http://dx.doi.org/10.1007/s11207-007-9064-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049163027


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Solar and Astrophysics Laboratory, Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Department ADBS, Building 252, 94304, Palo Alto, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aschwanden", 
        "givenName": "Markus J.", 
        "id": "sg:person.015744416563.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744416563.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama in Huntsville", 
          "id": "https://www.grid.ac/institutes/grid.265893.3", 
          "name": [
            "Department of Computer Science, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jong Kwan", 
        "id": "sg:person.016711051201.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016711051201.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Space Science and Technology Center", 
          "id": "https://www.grid.ac/institutes/grid.462618.f", 
          "name": [
            "National Space Science and Technology Center, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gary", 
        "givenName": "G. Allen", 
        "id": "sg:person.014603542655.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603542655.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, RH5 6NT, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Michael", 
        "id": "sg:person.011135542632.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011135542632.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solar System Research", 
          "id": "https://www.grid.ac/institutes/grid.435826.e", 
          "name": [
            "Max-Planck Institute for Solar System Research, 37191, Katlenburg-Lindau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inhester", 
        "givenName": "Bernd", 
        "id": "sg:person.010325144020.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325144020.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1086/510232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009587216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014265123601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009702870", 
          "https://doi.org/10.1023/a:1014265123601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014257826116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009763117", 
          "https://doi.org/10.1023/a:1014257826116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-005-2788-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010864567", 
          "https://doi.org/10.1007/s11207-005-2788-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-005-2788-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010864567", 
          "https://doi.org/10.1007/s11207-005-2788-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014916701283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019241064", 
          "https://doi.org/10.1023/a:1014916701283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023285749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023285749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:sola.0000013045.65499.da", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025128158", 
          "https://doi.org/10.1023/b:sola.0000013045.65499.da"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-006-0153-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029737558", 
          "https://doi.org/10.1007/s11207-006-0153-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005147921110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030820513", 
          "https://doi.org/10.1023/a:1005147921110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008097225773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032273135", 
          "https://doi.org/10.1023/a:1008097225773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/340385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036404749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-007-9027-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046647759", 
          "https://doi.org/10.1007/s11207-007-9027-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11207-006-0068-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048441640", 
          "https://doi.org/10.1007/s11207-006-0068-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/307036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058614558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/307502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058615023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/308483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058616002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/308867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058616386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/309486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058617002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/452630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058737284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/452630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058737284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.31445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156054"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-04", 
    "datePublishedReg": "2008-04-01", 
    "description": "The three-dimensional (3D) modeling of coronal loops and filaments requires algorithms that automatically trace curvilinear features in solar EUV or soft X-ray images. We compare five existing algorithms that have been developed and customized to trace curvilinear features in solar images: i) the oriented-connectivity method (OCM), which is an extension of the Strous pixel-labeling algorithm (developed by Lee, Newman, and Gary); ii) the dynamic aperture-based loop-segmentation method (developed by Lee, Newman, and Gary); iii) unbiased detection of curvilinear structures (developed by Steger, Raghupathy, and Smith); iv) the oriented-direction method (developed by Aschwanden); and v) ridge detection by automated scaling (developed by Inhester). We test the five existing numerical codes with a TRACE image that shows a bipolar active region and contains over 100 discernable loops. We evaluate the performance of the five codes by comparing the cumulative distribution of loop lengths, the median and maximum loop length, the completeness or detection efficiency, the accuracy, and flux sensitivity. These algorithms are useful for the reconstruction of the 3D geometry of coronal loops from stereoscopic observations with the STEREO spacecraft, or for quantitative comparisons of observed EUV loop geometries with (nonlinear force-free) magnetic field extrapolation models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11207-007-9064-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051932", 
        "issn": [
          "0038-0938", 
          "1573-093X"
        ], 
        "name": "Solar Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "248"
      }
    ], 
    "name": "Comparison of Five Numerical Codes for Automated Tracing of Coronal Loops", 
    "pagination": "359-377", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea3468ee2408057e61b0a28e3fb39564297b2587c5d482669cc5d5addfb4266e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11207-007-9064-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049163027"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11207-007-9064-9", 
      "https://app.dimensions.ai/details/publication/pub.1049163027"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11207-007-9064-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11207-007-9064-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11207-007-9064-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11207-007-9064-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11207-007-9064-9'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11207-007-9064-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N75ca544c7bbf487ba112a5d190f4f4e0
4 schema:citation sg:pub.10.1007/s11207-005-2788-5
5 sg:pub.10.1007/s11207-006-0068-7
6 sg:pub.10.1007/s11207-006-0153-y
7 sg:pub.10.1007/s11207-007-9027-1
8 sg:pub.10.1023/a:1005147921110
9 sg:pub.10.1023/a:1008097225773
10 sg:pub.10.1023/a:1014257826116
11 sg:pub.10.1023/a:1014265123601
12 sg:pub.10.1023/a:1014916701283
13 sg:pub.10.1023/b:sola.0000013045.65499.da
14 https://doi.org/10.1016/j.patcog.2005.07.004
15 https://doi.org/10.1086/307036
16 https://doi.org/10.1086/307502
17 https://doi.org/10.1086/308483
18 https://doi.org/10.1086/308867
19 https://doi.org/10.1086/309486
20 https://doi.org/10.1086/340385
21 https://doi.org/10.1086/452630
22 https://doi.org/10.1086/510232
23 https://doi.org/10.1109/34.31445
24 schema:datePublished 2008-04
25 schema:datePublishedReg 2008-04-01
26 schema:description The three-dimensional (3D) modeling of coronal loops and filaments requires algorithms that automatically trace curvilinear features in solar EUV or soft X-ray images. We compare five existing algorithms that have been developed and customized to trace curvilinear features in solar images: i) the oriented-connectivity method (OCM), which is an extension of the Strous pixel-labeling algorithm (developed by Lee, Newman, and Gary); ii) the dynamic aperture-based loop-segmentation method (developed by Lee, Newman, and Gary); iii) unbiased detection of curvilinear structures (developed by Steger, Raghupathy, and Smith); iv) the oriented-direction method (developed by Aschwanden); and v) ridge detection by automated scaling (developed by Inhester). We test the five existing numerical codes with a TRACE image that shows a bipolar active region and contains over 100 discernable loops. We evaluate the performance of the five codes by comparing the cumulative distribution of loop lengths, the median and maximum loop length, the completeness or detection efficiency, the accuracy, and flux sensitivity. These algorithms are useful for the reconstruction of the 3D geometry of coronal loops from stereoscopic observations with the STEREO spacecraft, or for quantitative comparisons of observed EUV loop geometries with (nonlinear force-free) magnetic field extrapolation models.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N0d35eb3b0f2d49d580798d268098fc8b
31 N66fed682bd9a40979aedf7afb2e3268e
32 sg:journal.1051932
33 schema:name Comparison of Five Numerical Codes for Automated Tracing of Coronal Loops
34 schema:pagination 359-377
35 schema:productId N8ed77dd0992347d8a8a54a407ae5eacb
36 Nc1476a02986b44c7a5948050249dc0de
37 Ne1ef221e4b3a44f4b5f52af21377637d
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049163027
39 https://doi.org/10.1007/s11207-007-9064-9
40 schema:sdDatePublished 2019-04-10T17:34
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N23a597e7262845aea9bd5a7d165b3ea7
43 schema:url http://link.springer.com/10.1007%2Fs11207-007-9064-9
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0d35eb3b0f2d49d580798d268098fc8b schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 N12de50efa1ea43b7b2c437fa5150e83e rdf:first sg:person.014603542655.87
50 rdf:rest N9efe2dc60d8248a8b019cf471fcf0451
51 N23a597e7262845aea9bd5a7d165b3ea7 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N2d26fe657bbf4c938b7fdaefd72136b5 schema:name Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, RH5 6NT, Surrey, UK
54 rdf:type schema:Organization
55 N66fed682bd9a40979aedf7afb2e3268e schema:volumeNumber 248
56 rdf:type schema:PublicationVolume
57 N75ca544c7bbf487ba112a5d190f4f4e0 rdf:first sg:person.015744416563.55
58 rdf:rest Nf10ec4b5294d4a4fb33d3df1093ab482
59 N8ed77dd0992347d8a8a54a407ae5eacb schema:name doi
60 schema:value 10.1007/s11207-007-9064-9
61 rdf:type schema:PropertyValue
62 N9efe2dc60d8248a8b019cf471fcf0451 rdf:first sg:person.011135542632.76
63 rdf:rest Na3463539974c402f95b2affff43e8120
64 Na3463539974c402f95b2affff43e8120 rdf:first sg:person.010325144020.04
65 rdf:rest rdf:nil
66 Nc1476a02986b44c7a5948050249dc0de schema:name readcube_id
67 schema:value ea3468ee2408057e61b0a28e3fb39564297b2587c5d482669cc5d5addfb4266e
68 rdf:type schema:PropertyValue
69 Ncc18ecc7c2184d18855b814144adeffb schema:name Solar and Astrophysics Laboratory, Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Department ADBS, Building 252, 94304, Palo Alto, CA, USA
70 rdf:type schema:Organization
71 Ne1ef221e4b3a44f4b5f52af21377637d schema:name dimensions_id
72 schema:value pub.1049163027
73 rdf:type schema:PropertyValue
74 Nf10ec4b5294d4a4fb33d3df1093ab482 rdf:first sg:person.016711051201.81
75 rdf:rest N12de50efa1ea43b7b2c437fa5150e83e
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:journal.1051932 schema:issn 0038-0938
83 1573-093X
84 schema:name Solar Physics
85 rdf:type schema:Periodical
86 sg:person.010325144020.04 schema:affiliation https://www.grid.ac/institutes/grid.435826.e
87 schema:familyName Inhester
88 schema:givenName Bernd
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325144020.04
90 rdf:type schema:Person
91 sg:person.011135542632.76 schema:affiliation N2d26fe657bbf4c938b7fdaefd72136b5
92 schema:familyName Smith
93 schema:givenName Michael
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011135542632.76
95 rdf:type schema:Person
96 sg:person.014603542655.87 schema:affiliation https://www.grid.ac/institutes/grid.462618.f
97 schema:familyName Gary
98 schema:givenName G. Allen
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603542655.87
100 rdf:type schema:Person
101 sg:person.015744416563.55 schema:affiliation Ncc18ecc7c2184d18855b814144adeffb
102 schema:familyName Aschwanden
103 schema:givenName Markus J.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744416563.55
105 rdf:type schema:Person
106 sg:person.016711051201.81 schema:affiliation https://www.grid.ac/institutes/grid.265893.3
107 schema:familyName Lee
108 schema:givenName Jong Kwan
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016711051201.81
110 rdf:type schema:Person
111 sg:pub.10.1007/s11207-005-2788-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010864567
112 https://doi.org/10.1007/s11207-005-2788-5
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11207-006-0068-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048441640
115 https://doi.org/10.1007/s11207-006-0068-7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11207-006-0153-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029737558
118 https://doi.org/10.1007/s11207-006-0153-y
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11207-007-9027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046647759
121 https://doi.org/10.1007/s11207-007-9027-1
122 rdf:type schema:CreativeWork
123 sg:pub.10.1023/a:1005147921110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030820513
124 https://doi.org/10.1023/a:1005147921110
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1008097225773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032273135
127 https://doi.org/10.1023/a:1008097225773
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1014257826116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009763117
130 https://doi.org/10.1023/a:1014257826116
131 rdf:type schema:CreativeWork
132 sg:pub.10.1023/a:1014265123601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009702870
133 https://doi.org/10.1023/a:1014265123601
134 rdf:type schema:CreativeWork
135 sg:pub.10.1023/a:1014916701283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019241064
136 https://doi.org/10.1023/a:1014916701283
137 rdf:type schema:CreativeWork
138 sg:pub.10.1023/b:sola.0000013045.65499.da schema:sameAs https://app.dimensions.ai/details/publication/pub.1025128158
139 https://doi.org/10.1023/b:sola.0000013045.65499.da
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.patcog.2005.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023285749
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1086/307036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058614558
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1086/307502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058615023
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1086/308483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058616002
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1086/308867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058616386
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1086/309486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058617002
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1086/340385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036404749
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1086/452630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058737284
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1086/510232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009587216
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/34.31445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156054
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.265893.3 schema:alternateName University of Alabama in Huntsville
162 schema:name Department of Computer Science, University of Alabama in Huntsville, 35899, Huntsville, AL, USA
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.435826.e schema:alternateName Max Planck Institute for Solar System Research
165 schema:name Max-Planck Institute for Solar System Research, 37191, Katlenburg-Lindau, Germany
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.462618.f schema:alternateName National Space Science and Technology Center
168 schema:name National Space Science and Technology Center, University of Alabama in Huntsville, 35899, Huntsville, AL, USA
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...