A geometric relation between the h-index and the Lorenz curve View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-16

AUTHORS

Leo Egghe, Ronald Rousseau

ABSTRACT

We obtain a remarkable geometric relation between the Lorenz curve of a non-negative, continuous, decreasing function Z(r) and the h-index of integrals defined over a subinterval of the domain of Z(r). This result leads to a new geometric interpretation of the h-index of Z.

PAGES

1-4

Journal

TITLE

Scientometrics

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11192-019-03083-2

DOI

http://dx.doi.org/10.1007/s11192-019-03083-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112829820


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hasselt", 
          "id": "https://www.grid.ac/institutes/grid.12155.32", 
          "name": [
            "University of Hasselt, Hasselt, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egghe", 
        "givenName": "Leo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Faculty of Social Sciences, University of Antwerp, 2020, Antwerp, Belgium", 
            "Facultair Onderzoekscentrum ECOOM, KU Leuven, Naamsestraat 61, 3000, Louvain, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseau", 
        "givenName": "Ronald", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11192-006-0143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002779472", 
          "https://doi.org/10.1007/s11192-006-0143-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0507655102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050917859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.joi.2019.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111623144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.joi.2019.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111623144"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-16", 
    "datePublishedReg": "2019-03-16", 
    "description": "We obtain a remarkable geometric relation between the Lorenz curve of a non-negative, continuous, decreasing function Z(r) and the h-index of integrals defined over a subinterval of the domain of Z(r). This result leads to a new geometric interpretation of the h-index of Z.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11192-019-03083-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1089056", 
        "issn": [
          "0138-9130", 
          "1588-2861"
        ], 
        "name": "Scientometrics", 
        "type": "Periodical"
      }
    ], 
    "name": "A geometric relation between the h-index and the Lorenz curve", 
    "pagination": "1-4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f11b8da1aa2ef44ce86a5a0e9c423fc43c256bf4ee95e4958390af91b879f609"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11192-019-03083-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112829820"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11192-019-03083-2", 
      "https://app.dimensions.ai/details/publication/pub.1112829820"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118305_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11192-019-03083-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11192-019-03083-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11192-019-03083-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11192-019-03083-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11192-019-03083-2'


 

This table displays all metadata directly associated to this object as RDF triples.

66 TRIPLES      20 PREDICATES      25 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11192-019-03083-2 schema:author N4f327cfbc2f34b4ea572361b4c29a2d5
2 schema:citation sg:pub.10.1007/s11192-006-0143-8
3 https://doi.org/10.1016/j.joi.2019.01.005
4 https://doi.org/10.1073/pnas.0507655102
5 schema:datePublished 2019-03-16
6 schema:datePublishedReg 2019-03-16
7 schema:description We obtain a remarkable geometric relation between the Lorenz curve of a non-negative, continuous, decreasing function Z(r) and the h-index of integrals defined over a subinterval of the domain of Z(r). This result leads to a new geometric interpretation of the h-index of Z.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf sg:journal.1089056
12 schema:name A geometric relation between the h-index and the Lorenz curve
13 schema:pagination 1-4
14 schema:productId N16c1f8b14b214dd5a98aa9a66b2fca4e
15 Nc137a51d23594f24ba41f48eb1e72c0c
16 Nd07cd67dfae44422a062f8345d500be5
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112829820
18 https://doi.org/10.1007/s11192-019-03083-2
19 schema:sdDatePublished 2019-04-11T12:03
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher Ne8c020c74a3e4f22afefb48fd60dddf5
22 schema:url https://link.springer.com/10.1007%2Fs11192-019-03083-2
23 sgo:license sg:explorer/license/
24 sgo:sdDataset articles
25 rdf:type schema:ScholarlyArticle
26 N16c1f8b14b214dd5a98aa9a66b2fca4e schema:name doi
27 schema:value 10.1007/s11192-019-03083-2
28 rdf:type schema:PropertyValue
29 N4f327cfbc2f34b4ea572361b4c29a2d5 rdf:first Nf52f1280e26645b0b4f47423295f1ed6
30 rdf:rest Ne733b232cc3d452898c5bc52e05e2e6d
31 Nc137a51d23594f24ba41f48eb1e72c0c schema:name dimensions_id
32 schema:value pub.1112829820
33 rdf:type schema:PropertyValue
34 Nd07cd67dfae44422a062f8345d500be5 schema:name readcube_id
35 schema:value f11b8da1aa2ef44ce86a5a0e9c423fc43c256bf4ee95e4958390af91b879f609
36 rdf:type schema:PropertyValue
37 Ne733b232cc3d452898c5bc52e05e2e6d rdf:first Nf87593a501c24912ad37b9194a79841b
38 rdf:rest rdf:nil
39 Ne8c020c74a3e4f22afefb48fd60dddf5 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Nf52f1280e26645b0b4f47423295f1ed6 schema:affiliation https://www.grid.ac/institutes/grid.12155.32
42 schema:familyName Egghe
43 schema:givenName Leo
44 rdf:type schema:Person
45 Nf87593a501c24912ad37b9194a79841b schema:affiliation https://www.grid.ac/institutes/grid.5596.f
46 schema:familyName Rousseau
47 schema:givenName Ronald
48 rdf:type schema:Person
49 sg:journal.1089056 schema:issn 0138-9130
50 1588-2861
51 schema:name Scientometrics
52 rdf:type schema:Periodical
53 sg:pub.10.1007/s11192-006-0143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002779472
54 https://doi.org/10.1007/s11192-006-0143-8
55 rdf:type schema:CreativeWork
56 https://doi.org/10.1016/j.joi.2019.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111623144
57 rdf:type schema:CreativeWork
58 https://doi.org/10.1073/pnas.0507655102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050917859
59 rdf:type schema:CreativeWork
60 https://www.grid.ac/institutes/grid.12155.32 schema:alternateName University of Hasselt
61 schema:name University of Hasselt, Hasselt, Belgium
62 rdf:type schema:Organization
63 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
64 schema:name Facultair Onderzoekscentrum ECOOM, KU Leuven, Naamsestraat 61, 3000, Louvain, Belgium
65 Faculty of Social Sciences, University of Antwerp, 2020, Antwerp, Belgium
66 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...