Accurate forecast of countries’ research output by macro-level indicators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11

AUTHORS

Christoph Emanuel Mueller

ABSTRACT

There is a great variation of research output across countries in terms of differences in the amount of published peer-reviewed literature. Besides determining the causal determinants of these differences, an important task of scientometric research is to make accurate predictions of countries’ future research output. Building on previous research on the key drivers of differences in countries’ research outputs, this study develops a model which includes sixteen macro-level predictors representing aspects of the research and economic system, of the political conditions, and of structural and cultural attributes of countries. In applying a machine learning procedure called boosted regression trees, the study demonstrates these predictors are sufficient for making highly accurate forecasts of countries’ research output across scientific disciplines. The study also shows that using a functionally flexible procedure like boosted regression trees can substantially increase the predictive power of the model when compared to traditional regression. Finally, the results obtained allow a different perspective on the functional forms of the relations between the predictors and the response variable. More... »

PAGES

1307-1328

References to SciGraph publications

Journal

TITLE

Scientometrics

ISSUE

2

VOLUME

109

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11192-016-2084-1

DOI

http://dx.doi.org/10.1007/s11192-016-2084-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039551701


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saarland University", 
          "id": "https://www.grid.ac/institutes/grid.11749.3a", 
          "name": [
            "Department of Sociology, Center for Evaluation (CEval), Saarland University, P.O. Box 151150, 66041, Saarbr\u00fcecken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueller", 
        "givenName": "Christoph Emanuel", 
        "id": "sg:person.013352641015.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352641015.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/0033-0124.00265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001164014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jae.3950080108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001600084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007763351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-011-0496-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008999186", 
          "https://doi.org/10.1007/s11192-011-0496-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-011-0476-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010221629", 
          "https://doi.org/10.1007/s11192-011-0476-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2009.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011166340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-015-1722-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012503539", 
          "https://doi.org/10.1007/s11192-015-1722-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(01)00065-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012543995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2656.2008.01390.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015018067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-012-0736-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015557938", 
          "https://doi.org/10.1007/s11192-012-0736-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/430311a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015713065", 
          "https://doi.org/10.1038/430311a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/430311a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015713065", 
          "https://doi.org/10.1038/430311a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012753601797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017672659", 
          "https://doi.org/10.1023/a:1012753601797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-011-0603-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023538859", 
          "https://doi.org/10.1007/s11192-011-0603-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.joi.2014.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026358660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1013203451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030645893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-014-1269-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031430106", 
          "https://doi.org/10.1007/s11192-014-1269-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032573094", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.23285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033523455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:ejep.0000036571.00320.b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037434947", 
          "https://doi.org/10.1023/b:ejep.0000036571.00320.b8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-010-0186-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037882394", 
          "https://doi.org/10.1007/s11192-010-0186-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-010-0186-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037882394", 
          "https://doi.org/10.1007/s11192-010-0186-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ensci.2016.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046992483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-008-0215-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049560240", 
          "https://doi.org/10.1007/s11192-008-0215-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-007-2054-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050007666", 
          "https://doi.org/10.1007/s11192-007-2054-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-007-2054-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050007666", 
          "https://doi.org/10.1007/s11192-007-2054-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11192-015-1718-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050192688", 
          "https://doi.org/10.1007/s11192-015-1718-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266462303000229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050863621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0066449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053570264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1017/s1876404511200046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054958352", 
          "https://doi.org/10.1017/s1876404511200046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0193841x15572017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063768334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0193841x15572017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063768334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1098214007308413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063979967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1098214007308413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063979967"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "There is a great variation of research output across countries in terms of differences in the amount of published peer-reviewed literature. Besides determining the causal determinants of these differences, an important task of scientometric research is to make accurate predictions of countries\u2019 future research output. Building on previous research on the key drivers of differences in countries\u2019 research outputs, this study develops a model which includes sixteen macro-level predictors representing aspects of the research and economic system, of the political conditions, and of structural and cultural attributes of countries. In applying a machine learning procedure called boosted regression trees, the study demonstrates these predictors are sufficient for making highly accurate forecasts of countries\u2019 research output across scientific disciplines. The study also shows that using a functionally flexible procedure like boosted regression trees can substantially increase the predictive power of the model when compared to traditional regression. Finally, the results obtained allow a different perspective on the functional forms of the relations between the predictors and the response variable.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11192-016-2084-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1089056", 
        "issn": [
          "0138-9130", 
          "1588-2861"
        ], 
        "name": "Scientometrics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "109"
      }
    ], 
    "name": "Accurate forecast of countries\u2019 research output by macro-level indicators", 
    "pagination": "1307-1328", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bc67d74e484d2b8025fcf858a0fd8ac1a546ddd2118ae7b9120d06e3afc97c01"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11192-016-2084-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039551701"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11192-016-2084-1", 
      "https://app.dimensions.ai/details/publication/pub.1039551701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70058_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11192-016-2084-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11192-016-2084-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11192-016-2084-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11192-016-2084-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11192-016-2084-1'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11192-016-2084-1 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N943036b9aab64f8ca9d8acfd61c3243e
4 schema:citation sg:pub.10.1007/978-0-387-84858-7
5 sg:pub.10.1007/s11192-007-2054-8
6 sg:pub.10.1007/s11192-008-0215-z
7 sg:pub.10.1007/s11192-010-0186-8
8 sg:pub.10.1007/s11192-011-0476-9
9 sg:pub.10.1007/s11192-011-0496-5
10 sg:pub.10.1007/s11192-011-0603-7
11 sg:pub.10.1007/s11192-012-0736-3
12 sg:pub.10.1007/s11192-014-1269-8
13 sg:pub.10.1007/s11192-015-1718-z
14 sg:pub.10.1007/s11192-015-1722-3
15 sg:pub.10.1017/s1876404511200046
16 sg:pub.10.1023/a:1012753601797
17 sg:pub.10.1023/b:ejep.0000036571.00320.b8
18 sg:pub.10.1038/430311a
19 https://app.dimensions.ai/details/publication/pub.1032573094
20 https://doi.org/10.1002/asi.23285
21 https://doi.org/10.1002/jae.3950080108
22 https://doi.org/10.1002/sim.1501
23 https://doi.org/10.1016/j.ensci.2016.03.002
24 https://doi.org/10.1016/j.ijpe.2009.03.015
25 https://doi.org/10.1016/j.joi.2014.09.011
26 https://doi.org/10.1016/s0167-9473(01)00065-2
27 https://doi.org/10.1017/s0266462303000229
28 https://doi.org/10.1111/0033-0124.00265
29 https://doi.org/10.1111/j.1365-2656.2008.01390.x
30 https://doi.org/10.1177/0193841x15572017
31 https://doi.org/10.1177/1098214007308413
32 https://doi.org/10.1214/aos/1013203451
33 https://doi.org/10.1371/journal.pone.0066449
34 schema:datePublished 2016-11
35 schema:datePublishedReg 2016-11-01
36 schema:description There is a great variation of research output across countries in terms of differences in the amount of published peer-reviewed literature. Besides determining the causal determinants of these differences, an important task of scientometric research is to make accurate predictions of countries’ future research output. Building on previous research on the key drivers of differences in countries’ research outputs, this study develops a model which includes sixteen macro-level predictors representing aspects of the research and economic system, of the political conditions, and of structural and cultural attributes of countries. In applying a machine learning procedure called boosted regression trees, the study demonstrates these predictors are sufficient for making highly accurate forecasts of countries’ research output across scientific disciplines. The study also shows that using a functionally flexible procedure like boosted regression trees can substantially increase the predictive power of the model when compared to traditional regression. Finally, the results obtained allow a different perspective on the functional forms of the relations between the predictors and the response variable.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N1dd5421ea12b415e9741e7f06ecb07a9
41 N2cff96b6c44e4f568463ed8cd45f0d1e
42 sg:journal.1089056
43 schema:name Accurate forecast of countries’ research output by macro-level indicators
44 schema:pagination 1307-1328
45 schema:productId N1c11b893a2a846378ca782f8b20d2d5c
46 N70f2763420494ff296e52e61870581d6
47 Nfa06a77b8d1745abac73ca09023dfd92
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039551701
49 https://doi.org/10.1007/s11192-016-2084-1
50 schema:sdDatePublished 2019-04-11T12:42
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nc3821a1b61cf4c6eb527dea82b98ff4f
53 schema:url https://link.springer.com/10.1007%2Fs11192-016-2084-1
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1c11b893a2a846378ca782f8b20d2d5c schema:name readcube_id
58 schema:value bc67d74e484d2b8025fcf858a0fd8ac1a546ddd2118ae7b9120d06e3afc97c01
59 rdf:type schema:PropertyValue
60 N1dd5421ea12b415e9741e7f06ecb07a9 schema:volumeNumber 109
61 rdf:type schema:PublicationVolume
62 N2cff96b6c44e4f568463ed8cd45f0d1e schema:issueNumber 2
63 rdf:type schema:PublicationIssue
64 N70f2763420494ff296e52e61870581d6 schema:name doi
65 schema:value 10.1007/s11192-016-2084-1
66 rdf:type schema:PropertyValue
67 N943036b9aab64f8ca9d8acfd61c3243e rdf:first sg:person.013352641015.35
68 rdf:rest rdf:nil
69 Nc3821a1b61cf4c6eb527dea82b98ff4f schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nfa06a77b8d1745abac73ca09023dfd92 schema:name dimensions_id
72 schema:value pub.1039551701
73 rdf:type schema:PropertyValue
74 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
75 schema:name Economics
76 rdf:type schema:DefinedTerm
77 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
78 schema:name Econometrics
79 rdf:type schema:DefinedTerm
80 sg:journal.1089056 schema:issn 0138-9130
81 1588-2861
82 schema:name Scientometrics
83 rdf:type schema:Periodical
84 sg:person.013352641015.35 schema:affiliation https://www.grid.ac/institutes/grid.11749.3a
85 schema:familyName Mueller
86 schema:givenName Christoph Emanuel
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352641015.35
88 rdf:type schema:Person
89 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
90 https://doi.org/10.1007/978-0-387-84858-7
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s11192-007-2054-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050007666
93 https://doi.org/10.1007/s11192-007-2054-8
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s11192-008-0215-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049560240
96 https://doi.org/10.1007/s11192-008-0215-z
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11192-010-0186-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037882394
99 https://doi.org/10.1007/s11192-010-0186-8
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11192-011-0476-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010221629
102 https://doi.org/10.1007/s11192-011-0476-9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11192-011-0496-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008999186
105 https://doi.org/10.1007/s11192-011-0496-5
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11192-011-0603-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023538859
108 https://doi.org/10.1007/s11192-011-0603-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11192-012-0736-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015557938
111 https://doi.org/10.1007/s11192-012-0736-3
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11192-014-1269-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031430106
114 https://doi.org/10.1007/s11192-014-1269-8
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11192-015-1718-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050192688
117 https://doi.org/10.1007/s11192-015-1718-z
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11192-015-1722-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012503539
120 https://doi.org/10.1007/s11192-015-1722-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1017/s1876404511200046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054958352
123 https://doi.org/10.1017/s1876404511200046
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1012753601797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017672659
126 https://doi.org/10.1023/a:1012753601797
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/b:ejep.0000036571.00320.b8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037434947
129 https://doi.org/10.1023/b:ejep.0000036571.00320.b8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/430311a schema:sameAs https://app.dimensions.ai/details/publication/pub.1015713065
132 https://doi.org/10.1038/430311a
133 rdf:type schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1032573094 schema:CreativeWork
135 https://doi.org/10.1002/asi.23285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033523455
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/jae.3950080108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001600084
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/sim.1501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007763351
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ensci.2016.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046992483
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijpe.2009.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011166340
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.joi.2014.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026358660
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0167-9473(01)00065-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012543995
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1017/s0266462303000229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050863621
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1111/0033-0124.00265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001164014
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1111/j.1365-2656.2008.01390.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015018067
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1177/0193841x15572017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063768334
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1177/1098214007308413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063979967
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1214/aos/1013203451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030645893
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1371/journal.pone.0066449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053570264
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.11749.3a schema:alternateName Saarland University
164 schema:name Department of Sociology, Center for Evaluation (CEval), Saarland University, P.O. Box 151150, 66041, Saarbrüecken, Germany
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...