Ontology type: schema:ScholarlyArticle
2020-02-13
AUTHORSG. V. Teplov, A. B. Vorozhtsov, S. V. Vasil’ev
ABSTRACTThe paper studies the influence of micro- and nanoparticles of metals and metal oxides on physicochemical properties of high-energy materials comprising cyclic nitroamine crystals. The micro- and nanoparticle encapsulation technique is developed for such cyclic nitroamines as 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 2,4,6,8-tetranitro-2,4,6,8- tetraazaicyclooctane (octogen, HMX). Studied and analyzed are physicochemical properties of the novel high-energy materials comprising crystals of cyclic nitroamines. It is found that among the main parameters affecting the particle-size distribution in the crystals and the volume fraction of the metal inclusions, of critical importance is the stirring rate of the reaction mixture when distilling off the solvent. The low stirring rate leads to the formation of polycrystalline structures with the branched surface and multiple defects. Although the conditions of the CL-20 crystallization (solvent/precipitator ratio, temperature, a mixer type, distillation rate) are similar for different aluminum grades (ASD-6 and ALEXTM), the shape and size of the synthesized crystals strongly differ in both cases. The CL-20Alex crystal is characterized by the lower size (~100–150 μm), more tapered sides and greater number of the surface defects than crystals with other inclusions. This is probably because the effect from metallic particles acting as inoculating crystals. More... »
PAGES1813-1821
http://scigraph.springernature.com/pub.10.1007/s11182-020-01911-0
DOIhttp://dx.doi.org/10.1007/s11182-020-01911-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1124856564
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Federal Scientific and Production Centre \u2018Altai\u2019, Biysk, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Federal Scientific and Production Centre \u2018Altai\u2019, Biysk, Russia"
],
"type": "Organization"
},
"familyName": "Teplov",
"givenName": "G. V.",
"id": "sg:person.016564670161.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016564670161.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Research Tomsk State University, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.77602.34",
"name": [
"National Research Tomsk State University, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Vorozhtsov",
"givenName": "A. B.",
"id": "sg:person.0771536125.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Research and Production Company \u2018Engineering Technologies\u2019, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.459875.2",
"name": [
"Research and Production Company \u2018Engineering Technologies\u2019, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Vasil\u2019ev",
"givenName": "S. V.",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11182-013-0043-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039306769",
"https://doi.org/10.1007/s11182-013-0043-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1016211215981",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049346765",
"https://doi.org/10.1023/a:1016211215981"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11182-012-9764-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012067117",
"https://doi.org/10.1007/s11182-012-9764-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11182-014-0328-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032129349",
"https://doi.org/10.1007/s11182-014-0328-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2020-02-13",
"datePublishedReg": "2020-02-13",
"description": "The paper studies the influence of micro- and nanoparticles of metals and metal oxides on physicochemical properties of high-energy materials comprising cyclic nitroamine crystals. The micro- and nanoparticle encapsulation technique is developed for such cyclic nitroamines as 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 2,4,6,8-tetranitro-2,4,6,8- tetraazaicyclooctane (octogen, HMX). Studied and analyzed are physicochemical properties of the novel high-energy materials comprising crystals of cyclic nitroamines. It is found that among the main parameters affecting the particle-size distribution in the crystals and the volume fraction of the metal inclusions, of critical importance is the stirring rate of the reaction mixture when distilling off the solvent. The low stirring rate leads to the formation of polycrystalline structures with the branched surface and multiple defects. Although the conditions of the CL-20 crystallization (solvent/precipitator ratio, temperature, a mixer type, distillation rate) are similar for different aluminum grades (ASD-6 and ALEXTM), the shape and size of the synthesized crystals strongly differ in both cases. The CL-20Alex crystal is characterized by the lower size (~100\u2013150 \u03bcm), more tapered sides and greater number of the surface defects than crystals with other inclusions. This is probably because the effect from metallic particles acting as inoculating crystals.",
"genre": "article",
"id": "sg:pub.10.1007/s11182-020-01911-0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1313824",
"issn": [
"1064-8887",
"1573-9228"
],
"name": "Russian Physics Journal",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "62"
}
],
"keywords": [
"nanoparticles of metals",
"high-energy materials",
"physicochemical properties",
"cyclic nitroamines",
"metal oxides",
"novel high-energy materials",
"stirring rate",
"different aluminum grades",
"influence of micro",
"particle size distribution",
"low stirring rates",
"aluminium grades",
"reaction mixture",
"synthesized crystals",
"nitroamines",
"polycrystalline structure",
"volume fraction",
"metallic particles",
"surface defects",
"encapsulation technique",
"metal inclusions",
"nanoparticles",
"main parameters",
"crystals",
"micro",
"lower size",
"oxide",
"metals",
"properties",
"materials",
"solvent",
"tapered sides",
"hexanitro",
"hexaazaisowurtzitane",
"crystallization",
"mixture",
"particles",
"surface",
"formation",
"size",
"structure",
"defects",
"multiple defects",
"parameters",
"shape",
"critical importance",
"influence",
"technique",
"conditions",
"rate",
"fraction",
"distribution",
"side",
"inclusion",
"effect",
"number",
"cases",
"greater number",
"importance",
"grade",
"paper"
],
"name": "Micro and Nanoparticles of Metals and Metal Oxides and Physicochemical Properties of Highenergy Materials Based on Cyclic Nitroamines",
"pagination": "1813-1821",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1124856564"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11182-020-01911-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11182-020-01911-0",
"https://app.dimensions.ai/details/publication/pub.1124856564"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_861.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11182-020-01911-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-020-01911-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-020-01911-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-020-01911-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-020-01911-0'
This table displays all metadata directly associated to this object as RDF triples.
162 TRIPLES
22 PREDICATES
92 URIs
78 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11182-020-01911-0 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | schema:author | N2c7b8cc8288e40e099f6675e73ba3003 |
6 | ″ | schema:citation | sg:pub.10.1007/s11182-012-9764-y |
7 | ″ | ″ | sg:pub.10.1007/s11182-013-0043-3 |
8 | ″ | ″ | sg:pub.10.1007/s11182-014-0328-1 |
9 | ″ | ″ | sg:pub.10.1023/a:1016211215981 |
10 | ″ | schema:datePublished | 2020-02-13 |
11 | ″ | schema:datePublishedReg | 2020-02-13 |
12 | ″ | schema:description | The paper studies the influence of micro- and nanoparticles of metals and metal oxides on physicochemical properties of high-energy materials comprising cyclic nitroamine crystals. The micro- and nanoparticle encapsulation technique is developed for such cyclic nitroamines as 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 2,4,6,8-tetranitro-2,4,6,8- tetraazaicyclooctane (octogen, HMX). Studied and analyzed are physicochemical properties of the novel high-energy materials comprising crystals of cyclic nitroamines. It is found that among the main parameters affecting the particle-size distribution in the crystals and the volume fraction of the metal inclusions, of critical importance is the stirring rate of the reaction mixture when distilling off the solvent. The low stirring rate leads to the formation of polycrystalline structures with the branched surface and multiple defects. Although the conditions of the CL-20 crystallization (solvent/precipitator ratio, temperature, a mixer type, distillation rate) are similar for different aluminum grades (ASD-6 and ALEXTM), the shape and size of the synthesized crystals strongly differ in both cases. The CL-20Alex crystal is characterized by the lower size (~100–150 μm), more tapered sides and greater number of the surface defects than crystals with other inclusions. This is probably because the effect from metallic particles acting as inoculating crystals. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N27c4c222c3a44591a65342cebf7f8c40 |
17 | ″ | ″ | Nafc2ef6a2ff64e33811d4ad9e6e06dc5 |
18 | ″ | ″ | sg:journal.1313824 |
19 | ″ | schema:keywords | aluminium grades |
20 | ″ | ″ | cases |
21 | ″ | ″ | conditions |
22 | ″ | ″ | critical importance |
23 | ″ | ″ | crystallization |
24 | ″ | ″ | crystals |
25 | ″ | ″ | cyclic nitroamines |
26 | ″ | ″ | defects |
27 | ″ | ″ | different aluminum grades |
28 | ″ | ″ | distribution |
29 | ″ | ″ | effect |
30 | ″ | ″ | encapsulation technique |
31 | ″ | ″ | formation |
32 | ″ | ″ | fraction |
33 | ″ | ″ | grade |
34 | ″ | ″ | greater number |
35 | ″ | ″ | hexaazaisowurtzitane |
36 | ″ | ″ | hexanitro |
37 | ″ | ″ | high-energy materials |
38 | ″ | ″ | importance |
39 | ″ | ″ | inclusion |
40 | ″ | ″ | influence |
41 | ″ | ″ | influence of micro |
42 | ″ | ″ | low stirring rates |
43 | ″ | ″ | lower size |
44 | ″ | ″ | main parameters |
45 | ″ | ″ | materials |
46 | ″ | ″ | metal inclusions |
47 | ″ | ″ | metal oxides |
48 | ″ | ″ | metallic particles |
49 | ″ | ″ | metals |
50 | ″ | ″ | micro |
51 | ″ | ″ | mixture |
52 | ″ | ″ | multiple defects |
53 | ″ | ″ | nanoparticles |
54 | ″ | ″ | nanoparticles of metals |
55 | ″ | ″ | nitroamines |
56 | ″ | ″ | novel high-energy materials |
57 | ″ | ″ | number |
58 | ″ | ″ | oxide |
59 | ″ | ″ | paper |
60 | ″ | ″ | parameters |
61 | ″ | ″ | particle size distribution |
62 | ″ | ″ | particles |
63 | ″ | ″ | physicochemical properties |
64 | ″ | ″ | polycrystalline structure |
65 | ″ | ″ | properties |
66 | ″ | ″ | rate |
67 | ″ | ″ | reaction mixture |
68 | ″ | ″ | shape |
69 | ″ | ″ | side |
70 | ″ | ″ | size |
71 | ″ | ″ | solvent |
72 | ″ | ″ | stirring rate |
73 | ″ | ″ | structure |
74 | ″ | ″ | surface |
75 | ″ | ″ | surface defects |
76 | ″ | ″ | synthesized crystals |
77 | ″ | ″ | tapered sides |
78 | ″ | ″ | technique |
79 | ″ | ″ | volume fraction |
80 | ″ | schema:name | Micro and Nanoparticles of Metals and Metal Oxides and Physicochemical Properties of Highenergy Materials Based on Cyclic Nitroamines |
81 | ″ | schema:pagination | 1813-1821 |
82 | ″ | schema:productId | Nd767f8ead9af4e27a79fa9fb9ee9139f |
83 | ″ | ″ | Nebeeb998973a46cfbed7cc07e279fe0e |
84 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1124856564 |
85 | ″ | ″ | https://doi.org/10.1007/s11182-020-01911-0 |
86 | ″ | schema:sdDatePublished | 2022-05-20T07:37 |
87 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
88 | ″ | schema:sdPublisher | N3122da0410b24aeabeb815ad146580c3 |
89 | ″ | schema:url | https://doi.org/10.1007/s11182-020-01911-0 |
90 | ″ | sgo:license | sg:explorer/license/ |
91 | ″ | sgo:sdDataset | articles |
92 | ″ | rdf:type | schema:ScholarlyArticle |
93 | N27c4c222c3a44591a65342cebf7f8c40 | schema:issueNumber | 10 |
94 | ″ | rdf:type | schema:PublicationIssue |
95 | N2c7b8cc8288e40e099f6675e73ba3003 | rdf:first | sg:person.016564670161.51 |
96 | ″ | rdf:rest | Nc33cf8646abf4156b0538813e59b31d4 |
97 | N3122da0410b24aeabeb815ad146580c3 | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | N54943098fc3a4f2b8cd4f5294fc81cb2 | schema:affiliation | grid-institutes:grid.459875.2 |
100 | ″ | schema:familyName | Vasil’ev |
101 | ″ | schema:givenName | S. V. |
102 | ″ | rdf:type | schema:Person |
103 | Nafc2ef6a2ff64e33811d4ad9e6e06dc5 | schema:volumeNumber | 62 |
104 | ″ | rdf:type | schema:PublicationVolume |
105 | Nc1da3270c4af4950a0f075ce45ad369f | rdf:first | N54943098fc3a4f2b8cd4f5294fc81cb2 |
106 | ″ | rdf:rest | rdf:nil |
107 | Nc33cf8646abf4156b0538813e59b31d4 | rdf:first | sg:person.0771536125.70 |
108 | ″ | rdf:rest | Nc1da3270c4af4950a0f075ce45ad369f |
109 | Nd767f8ead9af4e27a79fa9fb9ee9139f | schema:name | doi |
110 | ″ | schema:value | 10.1007/s11182-020-01911-0 |
111 | ″ | rdf:type | schema:PropertyValue |
112 | Nebeeb998973a46cfbed7cc07e279fe0e | schema:name | dimensions_id |
113 | ″ | schema:value | pub.1124856564 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Chemical Sciences |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Physical Chemistry (incl. Structural) |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Engineering |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Materials Engineering |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | sg:journal.1313824 | schema:issn | 1064-8887 |
128 | ″ | ″ | 1573-9228 |
129 | ″ | schema:name | Russian Physics Journal |
130 | ″ | schema:publisher | Springer Nature |
131 | ″ | rdf:type | schema:Periodical |
132 | sg:person.016564670161.51 | schema:affiliation | grid-institutes:None |
133 | ″ | schema:familyName | Teplov |
134 | ″ | schema:givenName | G. V. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016564670161.51 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.0771536125.70 | schema:affiliation | grid-institutes:grid.77602.34 |
138 | ″ | schema:familyName | Vorozhtsov |
139 | ″ | schema:givenName | A. B. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70 |
141 | ″ | rdf:type | schema:Person |
142 | sg:pub.10.1007/s11182-012-9764-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012067117 |
143 | ″ | ″ | https://doi.org/10.1007/s11182-012-9764-y |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1007/s11182-013-0043-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039306769 |
146 | ″ | ″ | https://doi.org/10.1007/s11182-013-0043-3 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | sg:pub.10.1007/s11182-014-0328-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032129349 |
149 | ″ | ″ | https://doi.org/10.1007/s11182-014-0328-1 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1023/a:1016211215981 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049346765 |
152 | ″ | ″ | https://doi.org/10.1023/a:1016211215981 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | grid-institutes:None | schema:alternateName | Federal Scientific and Production Centre ‘Altai’, Biysk, Russia |
155 | ″ | schema:name | Federal Scientific and Production Centre ‘Altai’, Biysk, Russia |
156 | ″ | rdf:type | schema:Organization |
157 | grid-institutes:grid.459875.2 | schema:alternateName | Research and Production Company ‘Engineering Technologies’, Moscow, Russia |
158 | ″ | schema:name | Research and Production Company ‘Engineering Technologies’, Moscow, Russia |
159 | ″ | rdf:type | schema:Organization |
160 | grid-institutes:grid.77602.34 | schema:alternateName | National Research Tomsk State University, Tomsk, Russia |
161 | ″ | schema:name | National Research Tomsk State University, Tomsk, Russia |
162 | ″ | rdf:type | schema:Organization |