Dynamics of Cosmological Models with Nonlinear Classical and Phantom Scalar Fields. II. Qualitative Analysis and Numerical Modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Yu. G. Ignat’ev, A. A. Agathonov

ABSTRACT

A detailed qualitative analysis and numerical modeling of the evolution of cosmological models based on nonlinear classical and phantom scalar fields with self-action are performed. Complete phase portraits of the corresponding dynamical systems and their projections onto the Poincaré sphere are constructed. It is shown that the phase trajectories of the corresponding dynamical systems can, depending on the parameters of the model of the scalar field, split into bifurcation trajectories along 2, 4, or 6 different dynamic streams. In the phase space of such systems, regions can appear which are inaccessible for motion. Here phase trajectories of the phantom scalar field wind onto one of the symmetric foci (centers) while the phase trajectories of the classical scalar field can have a limit cycle determined by the zero effective energy corresponding to a Euclidean Universe. More... »

PAGES

1-13

Journal

TITLE

Russian Physics Journal

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x

DOI

http://dx.doi.org/10.1007/s11182-019-01642-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113041104


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kazan Federal University", 
          "id": "https://www.grid.ac/institutes/grid.77268.3c", 
          "name": [
            "N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ignat\u2019ev", 
        "givenName": "Yu. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kazan Federal University", 
          "id": "https://www.grid.ac/institutes/grid.77268.3c", 
          "name": [
            "N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agathonov", 
        "givenName": "A. A.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "A detailed qualitative analysis and numerical modeling of the evolution of cosmological models based on nonlinear classical and phantom scalar fields with self-action are performed. Complete phase portraits of the corresponding dynamical systems and their projections onto the Poincar\u00e9 sphere are constructed. It is shown that the phase trajectories of the corresponding dynamical systems can, depending on the parameters of the model of the scalar field, split into bifurcation trajectories along 2, 4, or 6 different dynamic streams. In the phase space of such systems, regions can appear which are inaccessible for motion. Here phase trajectories of the phantom scalar field wind onto one of the symmetric foci (centers) while the phase trajectories of the classical scalar field can have a limit cycle determined by the zero effective energy corresponding to a Euclidean Universe.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11182-019-01642-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "type": "Periodical"
      }
    ], 
    "name": "Dynamics of Cosmological Models with Nonlinear Classical and Phantom Scalar Fields. II. Qualitative Analysis and Numerical Modeling", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06f1ea83629f969be98d8026f3fad93b202928efc6c40e075248435f64e85873"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11182-019-01642-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113041104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11182-019-01642-x", 
      "https://app.dimensions.ai/details/publication/pub.1113041104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11182-019-01642-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x'


 

This table displays all metadata directly associated to this object as RDF triples.

60 TRIPLES      20 PREDICATES      24 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11182-019-01642-x schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nfe1302932c004553951ffd909931e1cf
4 schema:datePublished 2019-03-27
5 schema:datePublishedReg 2019-03-27
6 schema:description A detailed qualitative analysis and numerical modeling of the evolution of cosmological models based on nonlinear classical and phantom scalar fields with self-action are performed. Complete phase portraits of the corresponding dynamical systems and their projections onto the Poincaré sphere are constructed. It is shown that the phase trajectories of the corresponding dynamical systems can, depending on the parameters of the model of the scalar field, split into bifurcation trajectories along 2, 4, or 6 different dynamic streams. In the phase space of such systems, regions can appear which are inaccessible for motion. Here phase trajectories of the phantom scalar field wind onto one of the symmetric foci (centers) while the phase trajectories of the classical scalar field can have a limit cycle determined by the zero effective energy corresponding to a Euclidean Universe.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf sg:journal.1313824
11 schema:name Dynamics of Cosmological Models with Nonlinear Classical and Phantom Scalar Fields. II. Qualitative Analysis and Numerical Modeling
12 schema:pagination 1-13
13 schema:productId N5cbfa5e115834ecca9c0adeacb8c4c05
14 N9b387d8f7c1449128db8dc86d20b4db6
15 Nef4ef3e5336d4423b00134cf9f96eadd
16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113041104
17 https://doi.org/10.1007/s11182-019-01642-x
18 schema:sdDatePublished 2019-04-11T13:19
19 schema:sdLicense https://scigraph.springernature.com/explorer/license/
20 schema:sdPublisher N06c0393eeb124b589bdcb23c451b4ea2
21 schema:url https://link.springer.com/10.1007%2Fs11182-019-01642-x
22 sgo:license sg:explorer/license/
23 sgo:sdDataset articles
24 rdf:type schema:ScholarlyArticle
25 N06c0393eeb124b589bdcb23c451b4ea2 schema:name Springer Nature - SN SciGraph project
26 rdf:type schema:Organization
27 N1cadb1f0217d4eb685929a2418c9914c rdf:first N73ff1a7734b14b869f43eb316b92418b
28 rdf:rest rdf:nil
29 N1e0d3defeeba4d5ab6281e138e2a9619 schema:affiliation https://www.grid.ac/institutes/grid.77268.3c
30 schema:familyName Ignat’ev
31 schema:givenName Yu. G.
32 rdf:type schema:Person
33 N5cbfa5e115834ecca9c0adeacb8c4c05 schema:name doi
34 schema:value 10.1007/s11182-019-01642-x
35 rdf:type schema:PropertyValue
36 N73ff1a7734b14b869f43eb316b92418b schema:affiliation https://www.grid.ac/institutes/grid.77268.3c
37 schema:familyName Agathonov
38 schema:givenName A. A.
39 rdf:type schema:Person
40 N9b387d8f7c1449128db8dc86d20b4db6 schema:name readcube_id
41 schema:value 06f1ea83629f969be98d8026f3fad93b202928efc6c40e075248435f64e85873
42 rdf:type schema:PropertyValue
43 Nef4ef3e5336d4423b00134cf9f96eadd schema:name dimensions_id
44 schema:value pub.1113041104
45 rdf:type schema:PropertyValue
46 Nfe1302932c004553951ffd909931e1cf rdf:first N1e0d3defeeba4d5ab6281e138e2a9619
47 rdf:rest N1cadb1f0217d4eb685929a2418c9914c
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
52 schema:name Applied Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1313824 schema:issn 1064-8887
55 1573-9228
56 schema:name Russian Physics Journal
57 rdf:type schema:Periodical
58 https://www.grid.ac/institutes/grid.77268.3c schema:alternateName Kazan Federal University
59 schema:name N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
60 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...