Dynamics of Cosmological Models with Nonlinear Classical and Phantom Scalar Fields. II. Qualitative Analysis and Numerical Modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Yu. G. Ignat’ev, A. A. Agathonov

ABSTRACT

A detailed qualitative analysis and numerical modeling of the evolution of cosmological models based on nonlinear classical and phantom scalar fields with self-action are performed. Complete phase portraits of the corresponding dynamical systems and their projections onto the Poincaré sphere are constructed. It is shown that the phase trajectories of the corresponding dynamical systems can, depending on the parameters of the model of the scalar field, split into bifurcation trajectories along 2, 4, or 6 different dynamic streams. In the phase space of such systems, regions can appear which are inaccessible for motion. Here phase trajectories of the phantom scalar field wind onto one of the symmetric foci (centers) while the phase trajectories of the classical scalar field can have a limit cycle determined by the zero effective energy corresponding to a Euclidean Universe. More... »

PAGES

1-13

Journal

TITLE

Russian Physics Journal

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x

DOI

http://dx.doi.org/10.1007/s11182-019-01642-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113041104


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kazan Federal University", 
          "id": "https://www.grid.ac/institutes/grid.77268.3c", 
          "name": [
            "N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ignat\u2019ev", 
        "givenName": "Yu. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kazan Federal University", 
          "id": "https://www.grid.ac/institutes/grid.77268.3c", 
          "name": [
            "N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agathonov", 
        "givenName": "A. A.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "A detailed qualitative analysis and numerical modeling of the evolution of cosmological models based on nonlinear classical and phantom scalar fields with self-action are performed. Complete phase portraits of the corresponding dynamical systems and their projections onto the Poincar\u00e9 sphere are constructed. It is shown that the phase trajectories of the corresponding dynamical systems can, depending on the parameters of the model of the scalar field, split into bifurcation trajectories along 2, 4, or 6 different dynamic streams. In the phase space of such systems, regions can appear which are inaccessible for motion. Here phase trajectories of the phantom scalar field wind onto one of the symmetric foci (centers) while the phase trajectories of the classical scalar field can have a limit cycle determined by the zero effective energy corresponding to a Euclidean Universe.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11182-019-01642-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "type": "Periodical"
      }
    ], 
    "name": "Dynamics of Cosmological Models with Nonlinear Classical and Phantom Scalar Fields. II. Qualitative Analysis and Numerical Modeling", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06f1ea83629f969be98d8026f3fad93b202928efc6c40e075248435f64e85873"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11182-019-01642-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113041104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11182-019-01642-x", 
      "https://app.dimensions.ai/details/publication/pub.1113041104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11182-019-01642-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01642-x'


 

This table displays all metadata directly associated to this object as RDF triples.

60 TRIPLES      20 PREDICATES      24 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11182-019-01642-x schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N286787f011514758ac4745790af37761
4 schema:datePublished 2019-03-27
5 schema:datePublishedReg 2019-03-27
6 schema:description A detailed qualitative analysis and numerical modeling of the evolution of cosmological models based on nonlinear classical and phantom scalar fields with self-action are performed. Complete phase portraits of the corresponding dynamical systems and their projections onto the Poincaré sphere are constructed. It is shown that the phase trajectories of the corresponding dynamical systems can, depending on the parameters of the model of the scalar field, split into bifurcation trajectories along 2, 4, or 6 different dynamic streams. In the phase space of such systems, regions can appear which are inaccessible for motion. Here phase trajectories of the phantom scalar field wind onto one of the symmetric foci (centers) while the phase trajectories of the classical scalar field can have a limit cycle determined by the zero effective energy corresponding to a Euclidean Universe.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf sg:journal.1313824
11 schema:name Dynamics of Cosmological Models with Nonlinear Classical and Phantom Scalar Fields. II. Qualitative Analysis and Numerical Modeling
12 schema:pagination 1-13
13 schema:productId N36335caccd144fc1b7d41908da73bc2e
14 N367a5ce298994755bdbcb41cad22bcc4
15 N6893a7c5e53a42028a38ea9bd0c91a4d
16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113041104
17 https://doi.org/10.1007/s11182-019-01642-x
18 schema:sdDatePublished 2019-04-11T13:19
19 schema:sdLicense https://scigraph.springernature.com/explorer/license/
20 schema:sdPublisher N9f26395f9fd94e71badb516b2efef53f
21 schema:url https://link.springer.com/10.1007%2Fs11182-019-01642-x
22 sgo:license sg:explorer/license/
23 sgo:sdDataset articles
24 rdf:type schema:ScholarlyArticle
25 N286787f011514758ac4745790af37761 rdf:first Nad0bd18bd0df4633a7871a616e5ad596
26 rdf:rest Nacb2d1d9cb7145b08261a0624b9d1697
27 N36335caccd144fc1b7d41908da73bc2e schema:name doi
28 schema:value 10.1007/s11182-019-01642-x
29 rdf:type schema:PropertyValue
30 N367a5ce298994755bdbcb41cad22bcc4 schema:name dimensions_id
31 schema:value pub.1113041104
32 rdf:type schema:PropertyValue
33 N6893a7c5e53a42028a38ea9bd0c91a4d schema:name readcube_id
34 schema:value 06f1ea83629f969be98d8026f3fad93b202928efc6c40e075248435f64e85873
35 rdf:type schema:PropertyValue
36 N78db87a05ac14e8eadc0154ecd8c4742 schema:affiliation https://www.grid.ac/institutes/grid.77268.3c
37 schema:familyName Agathonov
38 schema:givenName A. A.
39 rdf:type schema:Person
40 N9f26395f9fd94e71badb516b2efef53f schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nacb2d1d9cb7145b08261a0624b9d1697 rdf:first N78db87a05ac14e8eadc0154ecd8c4742
43 rdf:rest rdf:nil
44 Nad0bd18bd0df4633a7871a616e5ad596 schema:affiliation https://www.grid.ac/institutes/grid.77268.3c
45 schema:familyName Ignat’ev
46 schema:givenName Yu. G.
47 rdf:type schema:Person
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
52 schema:name Applied Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1313824 schema:issn 1064-8887
55 1573-9228
56 schema:name Russian Physics Journal
57 rdf:type schema:Periodical
58 https://www.grid.ac/institutes/grid.77268.3c schema:alternateName Kazan Federal University
59 schema:name N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
60 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...