Synthesis, Structure and Electromagnetic Properties of Nanocomposites with Three-component FeCoNi Nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-08

AUTHORS

D. G. Muratov, L. V. Kozhitov, V. V. Korovushkin, E. Yu. Korovin, A. V. Popkova, V. M. Novotortsev

ABSTRACT

Infrared heating was used to synthesize FeCoNi/С nanocomposites, where nanoparticles of FeCoNi ternary alloy are stabilized and uniformly distributed in the carbon matrix volume. The authors studied the impact of synthesis temperature and percentage ratio of metals upon the structure, composition and electromagnetic properties. X-ray phase analysis and Mössbauer spectroscopy showed that ternary alloy nanoparticles with different compositions and crystalline lattice types can be formed with the rise in synthesis temperature and iron concentration. Resonator method was used to examine frequency dependencies of relative complex dielectric and magnetic permeabilities of nanocomposites in the range of 3–12 GHz. Calculation of reflection coefficient based on experimental permeability data showed that by varying synthesis temperature and percentage ratio of metals one can control the frequency range of effective absorption of electromagnetic waves. It was established that increase in relative iron content from 33 to 50 rel.% leads to the shift of minimal electromagnetic wave reflection coefficient band from f ~ 12+ GHz to frequency f ~ 6 GHz at identical absorber thickness. More... »

PAGES

1-10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11182-019-01602-5

DOI

http://dx.doi.org/10.1007/s11182-019-01602-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112019412


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, Moscow, Russia", 
            "A. V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muratov", 
        "givenName": "D. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozhitov", 
        "givenName": "L. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korovushkin", 
        "givenName": "V. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korovin", 
        "givenName": "E. Yu.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tver State University", 
          "id": "https://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popkova", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NS Kurnakova Institute of General and Inorganic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435216.7", 
          "name": [
            "N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novotortsev", 
        "givenName": "V. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.carbon.2009.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004504256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116060049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008078644", 
          "https://doi.org/10.1134/s0965544116060049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116060049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008078644", 
          "https://doi.org/10.1134/s0965544116060049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2010.01.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008570054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2006.11.174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008921495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-015-3695-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012699894", 
          "https://doi.org/10.1007/s10854-015-3695-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2013.11.208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018160856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2017.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019339934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2009.12.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021864835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(00)00081-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022068132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(00)00081-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022068132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymdegradstab.2015.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029308185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2004.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032382184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2013.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033504133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2009.03.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036013452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-013-3339-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040623048", 
          "https://doi.org/10.1007/s10973-013-3339-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/24/34/345605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045166067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2008.01.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048027492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200602866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049418915"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-08", 
    "datePublishedReg": "2019-02-08", 
    "description": "Infrared heating was used to synthesize FeCoNi/\u0421 nanocomposites, where nanoparticles of FeCoNi ternary alloy are stabilized and uniformly distributed in the carbon matrix volume. The authors studied the impact of synthesis temperature and percentage ratio of metals upon the structure, composition and electromagnetic properties. X-ray phase analysis and M\u00f6ssbauer spectroscopy showed that ternary alloy nanoparticles with different compositions and crystalline lattice types can be formed with the rise in synthesis temperature and iron concentration. Resonator method was used to examine frequency dependencies of relative complex dielectric and magnetic permeabilities of nanocomposites in the range of 3\u201312 GHz. Calculation of reflection coefficient based on experimental permeability data showed that by varying synthesis temperature and percentage ratio of metals one can control the frequency range of effective absorption of electromagnetic waves. It was established that increase in relative iron content from 33 to 50 rel.% leads to the shift of minimal electromagnetic wave reflection coefficient band from f ~ 12+ GHz to frequency f ~ 6 GHz at identical absorber thickness.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11182-019-01602-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313824", 
        "issn": [
          "1064-8887", 
          "1573-9228"
        ], 
        "name": "Russian Physics Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Synthesis, Structure and Electromagnetic Properties of Nanocomposites with Three-component FeCoNi Nanoparticles", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02e1583b2b8ee580c359f0939586cab3be02db3e06936e89545f28aa880c26f8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11182-019-01602-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112019412"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11182-019-01602-5", 
      "https://app.dimensions.ai/details/publication/pub.1112019412"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64081_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11182-019-01602-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01602-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01602-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01602-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11182-019-01602-5'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      43 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11182-019-01602-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4ba30fdeea2f43ad97e90ef1260c0b8a
4 schema:citation sg:pub.10.1007/s10854-015-3695-7
5 sg:pub.10.1007/s10973-013-3339-1
6 sg:pub.10.1134/s0965544116060049
7 https://doi.org/10.1002/anie.200602866
8 https://doi.org/10.1016/j.carbon.2009.11.011
9 https://doi.org/10.1016/j.jallcom.2008.01.147
10 https://doi.org/10.1016/j.jallcom.2009.12.153
11 https://doi.org/10.1016/j.jallcom.2010.01.121
12 https://doi.org/10.1016/j.jallcom.2013.11.208
13 https://doi.org/10.1016/j.jmmm.2004.03.036
14 https://doi.org/10.1016/j.jmmm.2006.11.174
15 https://doi.org/10.1016/j.jmmm.2009.03.085
16 https://doi.org/10.1016/j.jmmm.2013.05.026
17 https://doi.org/10.1016/j.jmmm.2017.01.008
18 https://doi.org/10.1016/j.polymdegradstab.2015.12.025
19 https://doi.org/10.1016/s0304-8853(00)00081-0
20 https://doi.org/10.1088/0957-4484/24/34/345605
21 schema:datePublished 2019-02-08
22 schema:datePublishedReg 2019-02-08
23 schema:description Infrared heating was used to synthesize FeCoNi/С nanocomposites, where nanoparticles of FeCoNi ternary alloy are stabilized and uniformly distributed in the carbon matrix volume. The authors studied the impact of synthesis temperature and percentage ratio of metals upon the structure, composition and electromagnetic properties. X-ray phase analysis and Mössbauer spectroscopy showed that ternary alloy nanoparticles with different compositions and crystalline lattice types can be formed with the rise in synthesis temperature and iron concentration. Resonator method was used to examine frequency dependencies of relative complex dielectric and magnetic permeabilities of nanocomposites in the range of 3–12 GHz. Calculation of reflection coefficient based on experimental permeability data showed that by varying synthesis temperature and percentage ratio of metals one can control the frequency range of effective absorption of electromagnetic waves. It was established that increase in relative iron content from 33 to 50 rel.% leads to the shift of minimal electromagnetic wave reflection coefficient band from f ~ 12+ GHz to frequency f ~ 6 GHz at identical absorber thickness.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N2c053f0bdf244dcc9e98af59e3b072dd
28 N5eafca99c4c040f8804c6b25e68a4943
29 sg:journal.1313824
30 schema:name Synthesis, Structure and Electromagnetic Properties of Nanocomposites with Three-component FeCoNi Nanoparticles
31 schema:pagination 1-10
32 schema:productId N591f1aa6b02848ada3b5636b438bc4b2
33 Nc5a85a0d2e4e4df1990298a9cf6d0e95
34 Nd494090dad044100b4a6970e8105094f
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112019412
36 https://doi.org/10.1007/s11182-019-01602-5
37 schema:sdDatePublished 2019-04-11T09:22
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N7c76b8ba21354c289fe05dacaed1db5a
40 schema:url https://link.springer.com/10.1007%2Fs11182-019-01602-5
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0e970bd2dd5b4812aa7286f24370e35a rdf:first N4886afbb9bb243b3a4b69f0c9b053a0a
45 rdf:rest Nd1fa392e3fa34c5bb346a894450ff6fb
46 N20ee2d65932e4f0497806e07c48398d1 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
47 schema:familyName Muratov
48 schema:givenName D. G.
49 rdf:type schema:Person
50 N2c053f0bdf244dcc9e98af59e3b072dd schema:issueNumber 10
51 rdf:type schema:PublicationIssue
52 N343aec81dc2b43cfac6aa98107b552a2 rdf:first Nba1bc85365f84581b1af359afbc22f41
53 rdf:rest N3fc057e1f05e4ba3927381974d896fc9
54 N3fc057e1f05e4ba3927381974d896fc9 rdf:first N408c22bbb5db4ff4bc94c2b3307df731
55 rdf:rest Nb891ca208cff4df39f56fa993a9f13f5
56 N408c22bbb5db4ff4bc94c2b3307df731 schema:affiliation https://www.grid.ac/institutes/grid.438242.b
57 schema:familyName Popkova
58 schema:givenName A. V.
59 rdf:type schema:Person
60 N4886afbb9bb243b3a4b69f0c9b053a0a schema:affiliation https://www.grid.ac/institutes/grid.35043.31
61 schema:familyName Kozhitov
62 schema:givenName L. V.
63 rdf:type schema:Person
64 N4ba30fdeea2f43ad97e90ef1260c0b8a rdf:first N20ee2d65932e4f0497806e07c48398d1
65 rdf:rest N0e970bd2dd5b4812aa7286f24370e35a
66 N591f1aa6b02848ada3b5636b438bc4b2 schema:name doi
67 schema:value 10.1007/s11182-019-01602-5
68 rdf:type schema:PropertyValue
69 N5eafca99c4c040f8804c6b25e68a4943 schema:volumeNumber 61
70 rdf:type schema:PublicationVolume
71 N7c76b8ba21354c289fe05dacaed1db5a schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N89507d66fc3945699e9722cf5e29fcee schema:affiliation https://www.grid.ac/institutes/grid.435216.7
74 schema:familyName Novotortsev
75 schema:givenName V. M.
76 rdf:type schema:Person
77 N9bd9367126d748369fa47a0c541f3ae5 schema:affiliation https://www.grid.ac/institutes/grid.35043.31
78 schema:familyName Korovushkin
79 schema:givenName V. V.
80 rdf:type schema:Person
81 Nb891ca208cff4df39f56fa993a9f13f5 rdf:first N89507d66fc3945699e9722cf5e29fcee
82 rdf:rest rdf:nil
83 Nba1bc85365f84581b1af359afbc22f41 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
84 schema:familyName Korovin
85 schema:givenName E. Yu.
86 rdf:type schema:Person
87 Nc5a85a0d2e4e4df1990298a9cf6d0e95 schema:name dimensions_id
88 schema:value pub.1112019412
89 rdf:type schema:PropertyValue
90 Nd1fa392e3fa34c5bb346a894450ff6fb rdf:first N9bd9367126d748369fa47a0c541f3ae5
91 rdf:rest N343aec81dc2b43cfac6aa98107b552a2
92 Nd494090dad044100b4a6970e8105094f schema:name readcube_id
93 schema:value 02e1583b2b8ee580c359f0939586cab3be02db3e06936e89545f28aa880c26f8
94 rdf:type schema:PropertyValue
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
99 schema:name Materials Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1313824 schema:issn 1064-8887
102 1573-9228
103 schema:name Russian Physics Journal
104 rdf:type schema:Periodical
105 sg:pub.10.1007/s10854-015-3695-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012699894
106 https://doi.org/10.1007/s10854-015-3695-7
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10973-013-3339-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040623048
109 https://doi.org/10.1007/s10973-013-3339-1
110 rdf:type schema:CreativeWork
111 sg:pub.10.1134/s0965544116060049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008078644
112 https://doi.org/10.1134/s0965544116060049
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/anie.200602866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049418915
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.carbon.2009.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004504256
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jallcom.2008.01.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048027492
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jallcom.2009.12.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021864835
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jallcom.2010.01.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008570054
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jallcom.2013.11.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018160856
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jmmm.2004.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032382184
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jmmm.2006.11.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008921495
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jmmm.2009.03.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036013452
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jmmm.2013.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033504133
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jmmm.2017.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019339934
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.polymdegradstab.2015.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029308185
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0304-8853(00)00081-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022068132
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/0957-4484/24/34/345605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045166067
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.35043.31 schema:alternateName National University of Science and Technology
143 schema:name National University of Science and Technology “MISiS”, Moscow, Russia
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.423490.8 schema:alternateName A.V.Topchiev Institute of Petrochemical Synthesis
146 schema:name A. V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, Moscow, Russia
147 National University of Science and Technology “MISiS”, Moscow, Russia
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.435216.7 schema:alternateName NS Kurnakova Institute of General and Inorganic Chemistry
150 schema:name N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.438242.b schema:alternateName Tver State University
153 schema:name Tver State University, Tver, Russia
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
156 schema:name National Research Tomsk State University, Tomsk, Russia
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...